Aspectos relevantes sobre la bioquímica y la fisiología del fierro en plantas

  • Jaime Miguel Ortega-Maldonado Universidad Autónoma de Chihuahua
  • Dámaris Leopoldina Ojeda-Barrios Universidad Autónoma de Chihuahua
  • Jaime Javier Martínez-Téllez Universidad Autónoma de Chihuahua
  • Adriana Hernández-Rodríguez Universidad Autónoma de Chihuahua
  • Teresita de Jesús Ruíz-Anchondo Universidad Autónoma de Chihuahua
  • Dalila Jaqueline Escudero-Almanza Universidad Autónoma de Chihuahua
Palabras clave: deficiencia de fierro, adquisición de fierro, clorosis férrica, cloroplastos

Resumen

La presencia de suelos calcáreos provoca la deficiencia de Fierro (Fe) en las plantas, por consecuencia, se provoca un mal funcionamiento de la planta, ya que la fotosíntesis requiere del Fe para sintetizar los foto-elaborados; también, la deficiencia de Fe modifica la arquitectura física de la hoja y se observa un mesófilo con estructura irregular, provocando que la apertura de estomas no sea eficiente, evitando así la asimilación de CO2 y una falta de aprovechamiento de la humedad absorbida por la planta. La deficiencia de Fe inducida es un gran problema que afecta el rendimiento y la calidad de diversos cultivos. Las plantas han evolucionado estrategias multifacéticas, como la actividad quelato reductasa, la extrusión de protones y proteínas especializadas de almacenamiento, a fin de movilizar el Fe del ambiente y distribuirlo a través de la planta. Varias cuestiones relativas a la homeostasis del Fe en las plantas son actualmente estudiadas intensamente debido a su papel fundamental en la productividad de las plantas. La activación de las reacciones de absorción del Fe requiere una adaptación general del metabolismo primario porque estas actividades necesitan el constante suministro de sustratos energéticos. En los suelos calcáreos puede haber suficiente Fe pero no está disponible para las raíces. El presente escrito pone a consideración aspectos relevantes sobre la bioquímica y fisiología de las plantas.

Abstract

The presence of calcareous soils cause iron (Fe) deficiency in plants, consequently malfunctioning of the plant is raised, since photosynthesis requires Fe to complete the process. Fe deficiency also modifies the physical architecture of the leaf, Fe deficiency also alters the physical architecture of the leaf and a mesophilic with irregular structure is observed, causing that the opening of the stomata not to be efficient, thus avoiding the absorption of CO2 and a lack of assimilation of the moisture absorbed by the plant. Induced Iron deficiency is a major problem affecting the yield and quality of crops. Plants have evolved multifaceted strategies, as reductase activity, proton extrusion, and specialized storage proteins, to mobilize Fe from the environment and distribute it throughout the plant. Several issues related to Fe homeostasis in plants are currently intensively studied because of the role of Fe in plant productivity. Activation of Fe absorption reactions requires an overall adaption of primary metabolism because these activities need a constant supply of energy substrates supplied through photosynthesis.. Iron may be sufficient in calcareous soils but is not available to the roots. This paper discusses relevant aspects of the biochemistry and physiology of iron in plants.

Keywords: iron deficiency, iron acquisition, iron chlorosis, chloroplasts.

Citas

Abadía, J., S. Vázquez, R. Rellán-Álvarez, H. El-Jendoubi, A. Abadía, A. Álvarez-Fernández, & A.F. López-Millán. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry 49(5):471-482. https://doi.org/10.1016/j.plaphy.2011.01.026

Abadía, J., A. López, A. Rombolá & A. Abadía. 2002. Organic acids and Fe deficiency: a review. Plant Soil 241:75-86. https://doi.org/10.1023/A:1016093317898

Álvarez, A., S. García & J. J. Lucena. 2006. Evaluations of synthetic 3+3+ iron (III)-Chelates (EDDHA/Fe, EDDHMA/Fe and the novel 3+ EDDHSA/Fe ) to correct iron chlorosis. European Journal of Agronomy 22(2):119-130. https://doi.org/10.1016/j.eja.2004.02.001

Apel, K. & H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology 55: 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Capece, L., M.A. Marti, A. Crespo, F. Doctorovich & D.A. Estrin. 2006. Heme Protein Oxygen affinity regulation exerted by proximal effects. Journal of the American Chemical Society 128(38):12455-12461. https://doi.org/10.1021/ja0620033

Curie, C., Z. Panaviene, C. Loulergue, S. L. Dellaporta, J. F. Briat & E. L. Walker. 2001. Maize yellow stripe 1 encodes a membrane protein directly involved in Fe (III) uptake. Nature 409: 346-349. https://doi.org/10.1038/35053080

Díaz, I., M. C. del Campillo, M. Cantos & J. Torrent. 2009. Iron deficiency symptoms in grapevine as affected by the iron oxide and carbonate contents of model substrates. Plant and Soil 322:293–302. https://doi.org/10.1007/s11104-009-9916-1

Eide, D., M. Broderius, J. Fett & M. L. Guerinot. 1996. A novel iron- regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United States of America 93(11): 5624-5628. https://doi.org/10.1073%2Fpnas.93.11.5624

Eichert, T., J. J. Peguero, E. Gil, A. Heredia & V. Fernandez. 2009. Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field-grown peach (Prunus persica). Physiologia Plantarum 138(1): 48–59. https://doi.org/10.1111/j.1399-3054.2009.01295.x

El-Jendoubi, H., E. Igartua, J. Abadía & A. Abadía. 2012. Prognosis of iron chlorosis in pear (Pyrus communis L.) and peach (Prunus persica L. Batsch) trees using bud, flower and leaf mineral concentration. Plant Soil 354:121–139. https://doi.org/10.1007/s11104-011-1049-7

Frishman, D. & M.W. Hentze. 1996. Conservation of aconitase residues revealed by multiple sequence analysis. European Journal of Biochemistry 239(1):197–200. https://doi.org/10.1111/j.1432-1033.1996.0197u.x

Fernández, V., I. Orera, J. Abadía & A. Abadía. 2009. Foliar iron- fertilization of fruit trees: present knowledge and future perspective: a review. Journal of Horticultural Science and Biotechnology 84(1):1-6. https://doi.org/10.1080/14620316.2009.11512470

Fernández, V., T. Eichert, V. Del Río, G. López, J. Heredia, A. Abadía, A. Heredia & J. Abadía. 2008. Leaf structural changes associated with iron deficiency chlorosis in field-grown pear and peach: Physiological implications. Plant and Soil 311:161–172. https://doi.org/10.1007/s11104-008-9667-4

Fox, T.C. & M.L. Guerinot. 1998. Molecular biology of cation transport in plants. Annual Review of Plant Physiology and Plant Molecular Biology 49: 669-696. https://doi.org/10.1146/annurev.arplant.49.1.669

Halvin, J., S. Tisdale, J. Beaton & W. Nelson. 2005. Soil Fertility and Fertilizers: An introduction to nutrient management. 7th Edition. Prentice-Hall. ISBN 812033017X, 9788120330177.

Hille, R. 2006. Structure and Function of Xanthine Oxidoreductase. European Journal of Inorganic Chemistry 2006(10):1905–2095. https://doi.org/10.1002/ejic.200600087

Jiménez, S., F. Morales, A. Abadía, J. Abadía, M. A. Moreno & Y. Gogorcena. 2009. Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677 peach-almond hybrid. Plant and Soil 315:93–106. https://doi.org/10.1007/s11104-008-9735-9

Kawano, T. & S. Muto. 2000. Mechanism of peroxidase actions for salicylic acid-induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. Journal of Experimental Botany 51(345): 685-693. https://doi.org/10.1093/jxb/51.345.685

Lee, V., M. J. Beltrán, J. N. Lerma & L. P. Licón. 1998. Aplicación de ácido sulfúrico en el riego corrige la clorosis férrica de los cultivos en suelos calcáreos. Terra Latinoamericana 16(2):149-161. https://www.redalyc.org/articulo.oa?id=57316206

Maldonado-Torres, R., J. D. Etcheverez-Barra, G. Alcántar-González, J. Rodríguez-Alcázar & M.T. Colinas-León. 2006. Morphological changes in leaves of mexican lime affected by iron chlorosis. Journal of Plant Nutrition 20(4): 615-628. https://doi.org/10.1080/01904160600564337

Marschner, H. 2011. Mineral Nutrition of Higher Plants. 3th Edition. Elsevier/Academic Press. ISBN 9780123849052.

Morales, V. M., A. Backman & M. Bagdasarian.1991. A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97(1):39–47. https://doi.org/10.1016/0378-1119(91)90007-x

Neaman, A. & G. Espinoza. 2012. Advances in diagnosis of iron deficiency in avocado. Journal of Plant Nutrition 33(1): 38-45. https://doi.org/10.1080/01904160903391065

Paredes-Mendoza, M. & D. Espinosa-Victoria. 2010. Ácidos orgánicos producidos por rizobacterias que solubilizan fosfato: Una revisión crítica. Terra Latinoamericana 28(1): 61-70. https://www.redalyc.org/articulo.oa?id=57316076007

Palacios, J.V. 2003. Clorosis Férrica y su relación con el nivel de clorofila y Hierro en diferentes órganos en palto (persea americana mill.) (Tesis, Universidad de Chile).

Razeto, B. & G. Valdez. 2006. Análisis de Hierro soluble en tejidos para diagnosticar el déficit de Fierro en nectarino: Tissue soluble irondeficiency in nectarin. Agricultura Técnica (Chile) 66(2):79-84. http://dx.doi.org/10.4067/S0365-28072006000200012

Robinson, N.J., C.M. Procter, E.L. Connolly & M.L. Guerinot. 1999. A ferric- chelate reductase for iron uptake from soils. Nature 397: 694-697. https://doi.org/10.1038/17800

Römheld, V. & H. Marschner. 1990. Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Plant and Soil 123:147-153. https://doi.org/10.1007/BF00011260

Santi, S. & W. Schmidt. 2009. Dissecting iron deficiency-induced proton extrusion in arabidopsis roots. New Phytologist 183(4):1072- 1084. https://doi.org/10.1111/j.1469-8137.2009.02908.x

Sanvisens, N., M.C. Bañó, M. Huang & S. Puig. 2011. Regulation of ribonucleotide reductase in response to iron deficiency. Molecular Cell 44 (5): 759-69. https://doi.org/10.1016/j.molcel.2011.09.021

Terry, N. & J. Abadia.1986. Function of iron in chloroplasts. Journal of Plant Nutrition 9(3-7): 609–646. https://doi.org/10.1080/01904168609363470

Valdés, G. 2004. Diagnóstico de la clorosis férrica en duraznero mediante el análisis de hierro en distintos tejidos (Tesis, Universidad de Chile). https://repositorio.uchile.cl/handle/2250/101725

Valko, M., H. Morris & M. T. D. Cronin. 2005. Metals, toxicity and oxidative stress. Current Medicinal Chemistry 12(10):1161-1208. https://doi.org/10.2174/0929867053764635

Vigani, G. 2012. Discovering the role of mitochondria in the iron deficiency-induced metabolic responses of plants. Journal of Plant Physiology 169(1): 11-14. https://doi.org/10.1016/j.jplph.2011.09.008

Von Wiren, N., S. Mori, H. Marschner & V. Romheld. 1994. Iron inefficiency in maize mutant ys1 (Zea mays L. cv Yellow-Stripe) is caused by defect in uptake of iron phytosiderophores. Plant Physiology 106(1): 71-77. https://doi.org/10.1104/pp.106.1.71

Yanguas, R., M. C. del Campillo & J. Torrent. 1997. Predicción de la incidencia de la clorosis férrica en melocotonero cultivado en suelos calcáreos;ç. Agrochímica 41(3-4): 120-129. http://www.uco.es/organiza/departamentos/decraf/pdf-edaf/agrochimica-97.pdf

Zavala, F., R. Maldonado, M. Sandoval, M. E. Álvarez, M. T. Colinas & P. Ramírez. 2011. Cambios morfológicos y fisiológicos en hojas de frijol tolerante y susceptible a deficiencia de hierro. Terra Latinoamericana 29(3):161-172. https://www.redalyc.org/articulo.oa?id=57321283005

Publicado
2020-10-31
Cómo citar
Ortega-Maldonado, J. M., Ojeda-Barrios, D. L., Martínez-Téllez, J. J., Hernández-Rodríguez, A., Ruíz-Anchondo, T. de J., & Escudero-Almanza, D. J. (2020). Aspectos relevantes sobre la bioquímica y la fisiología del fierro en plantas. TECNOCIENCIA Chihuahua, 8(1), 30-38. https://doi.org/10.54167/tch.v8i1.650
Sección
Medio Ambiente y Desarrollo Sustentable

Artículos más leídos del mismo autor/a