El zinc como promotor de crecimiento y fructificación en el nogal pecanero

The zinc as a promoter of growth and fruiting in pecan trees

  • Dámaris Leopoldina Ojeda-Barrios Universidad Autónoma de Chihuahua
  • Eloisa Perea-Portillo Universidad Autónoma de Chihuahua
  • Ofelia Adriana Hernández-Rodríguez Universidad Autónoma de Chihuahua
  • Dalila Jaqueline Escudero-Almanza Universidad Autónoma de Chihuahua
  • Jaime Javier Martínez-Téllez Universidad Autónoma de Chihuahua
  • Gustavo Rogelio López-Ochoa Universidad Autónoma de Chihuahua
Palabras clave: Carya illinoensis, ácido indolacético, fertilización foliar, quelatos

Resumen

Las necesidades de zinc (Zn) que tiene el nogal pecanero [Carya illinoinensis (Wangenh.) K. Koch]; lo ubican como uno de los micronutrimentos más requeridos por este árbol. Esto es presuntamente originado por su indisponibilidad en suelos calcáreos que predominan en el norte de México. En la actualidad la deficiencia de este elemento produce un decremento aproximado del 20 % en la producción y la calidad de la nuez. Las prácticas de manejo de este nutriente en las huertas nogaleras consisten en aplicaciones foliares; desde el periodo de brotación hasta el crecimiento rápido de fruto, aplicando productos de Zn, incluyendo sulfatos y quelatos. El presente escrito pone en relieve el estado del arte sobre la importancia del Zn en los procesos fisiológicos y bioquímicos; así como también las causas y corrección de su deficiencia y toxicidad en el cultivo del nogal pecanero. Se puede concluir que el Zn es un elemento esencial, que influye en los procesos de crecimiento y fructificación en el árbol de nogal pecanero, el cual si es aplicado foliarmente prevé y corrige la deficiencia que presente el árbol, pero si es aplicado edáficamente; la respuesta puede tardar algunos años.

Abstract

The need of Zinc (Zn) the pecan tree [Carya illinoinensis (Wangenh.) K. Koch] has ranks Zinc as one of the most required micronutrients. This need is presumably caused by Zn unavailability in calcareous soils that predominate in the north of Mexico. Currently, the deficiency of this element causes an approximate 20% decrease in the production and quality of the pecan nut. The management practices of this nutrient in the pecan tree orchards consist in foliar applications, from sprouting to fruit’s rapid growth period, using Zn products, including sulfates and chelates. This article highlights the state of the art about the role that Zn plays in the physiological and biochemical processes, as well as the causes and correction of its deficiency and toxicity in pecan tree growing. It can be concluded that Zn is an essential element that influences the growth and fruiting processes of the pecan tree, which if applied foliar prevents and corrects the deficiency presented by the tree, but if it is edaphically applied then response may take some years.

Keywords: Carya illinoensis, indoleacetic acid, foliar fertilization, chelates.

Citas

Acuña-Maldonado, L., M. Smith, N. Maness & B. Cheary. 2003. Influence of nitrogen absorption, partitioning, and yield of pecan. Journal of the American Society for Horticultural Science 128(2):155-162. http://dx.doi.org/10.21273/JASHS.128.2.0155

Amiri, M. E., E. Fallahi & A. Golchin. 2008. Influence of foliar and ground fertilization on yield, fruit quality, and soil, leaf, and fruit mineral nutrients in apple. Journal of Plant Nutrition 31(3):515-525. https://doi.org/10.1080/01904160801895035

Barak, P. & P. Helmke. 1993. The chemistry of zinc. En Zinc in Soil and Plants. Kluwer Academic Publishers. ISBN 9789401043809.

Blaudez, D., A. Kohler, F. Martin, D. Sanders & M. Chalot. 2003. Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15(12):2911-2928. https://doi.org/10.1105/tpc.017541

Broadley, M.R., P.J. White, J.P. Hammond, I. Zelko & A. Lux. 2007. Zinc in plants. New Phytologist 173(4): 677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

Callahan, D.L., A.J.M. Baker, S.D. Kolev & A.G. Wedd. 2006. Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry 11(1):2-12. https://doi.org/10.1007/s00775-005-0056-7

Flores, M., A. Anchondo, M. Olivas & E. Sánchez. 2009. Acidificación en banda, labranza invernal y zinc en nogal pecanero. En Memoria de artículos en resumen y en extenso. En Memorias del 13º Día del Nogalero, Chihuahua, Chih. México.

Hacisalihoglu, G., J.J. Hart, C.E. Vallejos & L.V. Kochian. 2004. The role of shoot-localized processes in the mechanism of Zn efficiency in common bean. Planta 218(5):704-711. https://doi.org/10.1007/s00425-003-1155-8

Haydon, M.J. & C.S. Cobbet. 2007. Transporters of ligands for essential metal ions in plants. New Phytologist 174(3):499-506. https://doi.org/10.1111/j.1469-8137.2007.02051.x

Hu, H., D. Sparks. 1991. Zinc deficiency inhibits chlorophyll synthesis and gas exchange in ‘Stuart’ pecan. Journal of the American Society for Horticultural Science 26(3):267-268. https://doi.org/10.21273/HORTSCI.26.3.267

Hussain, D., M.J. Haydon, Y. Wang, E. Wong, S.M. Sherson, J. Young, J. Camakaris, J.F. Harper & C.S. Cobbet. 2004. P-Type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16(5):1327-1339. https://doi.org/10.1105/tpc.020487

Kim, T., H. Mills & H. Wefzstein. 2003. Cytological and ultrastructural evaluations of Zinc deficiency in leaves. Journal of the American Society for Horticultural Science 128(2):171- 175. https://doi.org/10.21273/JASHS.128.2.0171

Kilby, M. W. 2006. Fall-applied foliar Zinc for pecan. Journal of the American Society for Horticultural Science 41(1):275-276. https://doi.org/10.21273/HORTSCI.41.1.275

Knepper, T. P., A. Werner & G. Bogenschutz. 2005. Determination of synthetic chelating agents in surface and waste water by ion chromatography-mass spectrometry. Journal of Chromatography A 1085(2):240-246. https://doi.org/10.1016/j.chroma.2005.06.045

Kobae, Y., T. Uemura, M.H. Sato, M. Ohnishi,T. Mimura,T. Nakagawa & M. Maeshima. 2004. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant and Cell Physiology 45(12):1749-1758. https://doi.org/10.1093/pcp/pci015

Krämer, U. 2005. MTP1 mops up excess zinc in Arabidopsis cells. Trends in Plant Science 10(7):313-315. https://doi.org/10.1016/j.tplants.2005.05.008

Krämer, U., I.N. Talke & M. Hanikenne. 2007.Transition metal transport. FEBS letters 581(12):2263-2272. https://doi.org/10.1016/j.febslet.2007.04.010

Küpper, H., A. Mijovilovich, W. Meyer-Klaucke & P.M.H. Kroneck. 2004. Tissue and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) revealed by X-ray absorption spectroscopy. Plant Physiology 134(2):748-757. https://doi.org/10.1104%2Fpp.103.032953

Lucena, J. J. 2009. El empleo de complejantes y quelatos en la fertilización de micronutrientes. Revista Ceres 56(4):527-535. https://www.redalyc.org/articulo.oa?id=305226808020

Maldonado, R. T., G. Almaguer, M. E. Álvarez & E. Robledo. 2008. Diagnóstico nutrimental y validación de dosis de fertilización para limón persa. Terra Latinoamericana 26(4):341-349. https://www.redalyc.org/articulo.oa?id=57313051007

Marschner, H. 1986. Mineral nutrition of higher plants. Academic Press: Harcourt Brace Jovannovich, Publishers.

Mills, R. F., A. Francini, P. S. C. Ferreira da Rocha, P. J. Baccarini, M. Aylett, G. C. Krijger & L. E. Williams. 2005. The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS letters 579(3):783-791. https://doi.org/10.1016/j.febslet.2004.12.040

Núñez-Moreno, H., J. L. Walworth, A. P. Pond & M. Kilby. 2009a. Soil zinc fertilization of ‘Wichita’ pecan trees growing under alkaline soil conditions. Journal of the American Society for Horticultural Science 44(6):1736-1740. https://doi.org/10.21273/HORTSCI.44.6.1736

Núñez-Moreno, H., J. L. Walworth & A. P. Pond. 2009b. Manure and soil zinc application to “Wichita” pecan trees growing under alkaline conditions. Journal of the American Society for Horticultural Science 44(6):1741-1745. https://doi.org/10.21273/HORTSCI.44.6.1741

Ojeda-Barrios, D. L., O.A. Hernández-Rodríguez, J. Martínez-Téllez, A. Núñez-Barrios & E. Perea-Portillo. 2009. Aplicación foliar de quelato de zinc en nogal pecanero. Revista Chapingo Serie Horticultura 15(2):205-210. https://www.redalyc.org/articulo.oa?id=60912457014

Papoyan, A. & L.V. Kochian. 2004. Identification of Thlapsi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiology 136(3):3814- 3823. https://doi.org/10.1104/pp.104.044503

Rivera-Ortiz, P., B. I. Castro-Meza & F. R. de la Garza-Requena. 2008. Clorosis férrica en cítricos y fertilización foliar. Terra Latinoamericana 27(1):11-16. https://www.redalyc.org/articulo.oa?id=57315593002

Rodríguez-Lucena, P., L. Hernández-Apaolaza & J. J. Lucena. 2010. Comparison of iron chelates and complexes supplied as foliar sprays and in nutrient solution to correct iron chlorosis of soybean. Soil Science 173(1):120-126. https://doi.org/10.1002/jpln.200800256

Sagardoy, R., A. F. Morales, A. López-Millán, Abadía & J.Abadía. 2008. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biology 11(3):339-350. https://doi.org/10.1111/j.1438-8677.2008.00153.x

Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. 2008. Crecimiento en producción de nuez, favorece exportación a Norteamérica. Boletín Num. 074/06. SAGARPA.

Smith, M. W., C. T. Rohla, N. O. Maness. 2007. Correlations of crop load and return bloom with root and shoot concentrations of potassium, nitrogen and nonstructural carbohydrates in pecan. Journal of the American Society for Horticultural Science 132(1):44-51. https://doi.org/10.21273/JASHS.132.1.44

Srivastava, A. K. & S. Singh. 2009. Zinc nutrition in Nagpur mandarin on Haplustert. Journal of Plant Nutrition 32(7):1065-1081. https://doi.org/10.1080/01904160902943114

Vargas-Piedra, G. & J. G. Arreola-Ávila. 2008. Respuesta del nogal pecanero (Carya illinoensis K. Koch) a las aplicaciones foliares de nutrimentos. Revista Chapingo Serie Zonas Áridas 7(1): 7-14. https://www.redalyc.org/articulo.oa?id=455545066002

Verret, F., A. Gravot, P.Auroy, N. Leonhardt, P. David, L. Nussaume, A. Vavasseur & P. Richard. 2004. Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS letters 576(3):306-312. https://doi.org/10.1016/j.febslet.2004.09.023

Wells, M. L. & B. W. Wood. 2008. Foliar boron and nickel applications reduce water-stage fruit-split of pecan. Journal of the American Society for Horticultural Science 43(5):1437- 1440. https://doi.org/10.21273/HORTSCI.43.5.1437

Wintz, H., T. Fox, Y. Y. Wu, V. Feng, W. Cheng, H. S. Chang, T. Zhu & C. Vulpe. 2003. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. Journal of Biological Chemistry 278(48):47644-47653. https://doi.org/10.1074/jbc.M309338200

Wood, B. W. & J. A. Payne. 1997. Comparison of ZnO and ZnSO4 for correcting severe foliar zinc deficiency in pecan. Journal of the American Society for Horticultural Science 32(1):53-56. https://doi.org/10.21273/HORTSCI.32.1.53

Wood, B. W. 2007. Correction of zinc deficiency in pecan by soil banding. Dept. of Agriculture. Journal of the American Society for Horticultural Science 42(7):1554-1558. https://doi.org/10.21273/HORTSCI.42.7.1554

Publicado
2020-11-04
Cómo citar
Ojeda-Barrios, D. L., Perea-Portillo, E., Hernández-Rodríguez, O. A., Escudero-Almanza, D. J., Martínez-Téllez, J. J., & López-Ochoa, G. R. (2020). El zinc como promotor de crecimiento y fructificación en el nogal pecanero: The zinc as a promoter of growth and fruiting in pecan trees. TECNOCIENCIA Chihuahua, 4(2), 64-71. https://doi.org/10.54167/tch.v4i2.714

Artículos más leídos del mismo autor/a