Efecto del diazinón sobre el cultivo de linfocitos de sangre periférica de humano

Diazinon effect on cultivated lymphocytes from human peripheral blood

  • An´íbal Sierra-Fonseca Universidad Autónoma de Ciudad Juárez
  • Yuren Casillo-Sosa Universidad Autónoma de Ciudad Juárez
  • Fernando Plenge-Tellechea Universidad Autónoma de Ciudad Juárez
Palabras clave: Plaguicida organofosforado, linfocitos, sangre, cultivos


Se evaluó el efecto del plaguicida organofosforado diazinón sobre el cultivo de linfocitos de sangre periférica humana. Este plaguicida se utiliza para el control de plagas de insectos y como acaricida. Las aplicaciones se hicieron con dos presentaciones distintas: una comercial de uso común, denominado Knox Out® y otra presentación de grado analítico de estándar. Para la obtención de células se empleó el método de sedimentación de eritrocitos. Los linfocitos aislados se incubaron en medio de cultivo por 24, 48 y 72 h, y fueron expuestos a diferentes concentraciones de diazinón (μM-mM). Los diferentes tratamientos se realizaron en ausencia o presencia del mitógeno fitohemaglutinina (PHA). Se realizó un primer set de barridos de diazinón sin PHA utilizando un amplio margen de concentraciones de 0.1 a 1 mM y un segundo set de experimentos con concentraciones de 5 μM hasta un máximo de 50 μM, en ausencia y presencia de PHA. Los resultados del primer set no mostraron efectos totalmente letales sobre los linfocitos visiblemente expuestos al microscopio. Las concentraciones del set de entre 5 y 50 μM fueron las que presentaron un mayor efecto sobre los linfocitos, disminuyendo el número de células viables o estimulando la proliferación sobre el control. Este resultado no se observó con diazinón comercial y PHA, donde sólo disminuyó el número de células viables. Se visualizaron, de forma ocasional, células con indicios de necrosis y apoptosis en los cultivos expuestos al diazinón.


The effect of diazinon, an organophosphate pesticide used to control pests such as acarine and insects, was evaluated in cultured human peripheral blood lymphocyres. Two diazinon presentations were used: commercially available diazinon (Knox Out®, Mexico) and an analytical grade standard. The lymphocytes cellular pellet was obtained by the erythrocyte sedimentation method to obtain the mononuclear cells suspended in plasma. The lymphocytes were incubated in culture medium for 24, 48 and 72 h, in absence and presence of different diazinon concentrations (μM-mM). These treatments were in absence and presence of mitogen phytohemagglutinin (PHA). An initial study was carried out with a broad range of diazinon concentrations (0.1-1 mM) without PHA and since high concentration showed no effect, a second set of experiments was repeated using concentrations ranging from 5 until 50 μM of both pure and commercial diazinon, in the absence or presence of PHA. No significant effects were detected for the concentrations between 0.1 and 1 mM. Concentrations of 5 to 50 μM drastically caused reduction of cell viability or stimulated lymphocyte proliferation over control. Nevertheless, this effect was not observed in the presence of diazinon and PHA, only a decrease the quantity of viable cells was observed. Additionally, necrotic and apoptotic cells were visualized in cultures exposed to diazinon.

Keywords: Organophosphate pesticide, lymphocyte, cell culture.


Abou-Donia, M. B. 2003. Organophosphorus Ester-induced Chronic Neurotoxicity. Archives of Environmental Health: An International Journal 58(8): 484–497. https://doi.org/10.3200/AEOH.58.8.484-497

Axelrad, J. C., C. V. Howard & W. G. McLean. 2003. The effects of acute pesticide exposure on neuroblastoma cells chronically exposed to diazinon. Toxicology 185(1-2): 67-78.

Bianchi-Santamaria, A., M. Gobbi, M. Cembran & A. Arnaboldi. 1997. Human lymphocyte micronucleus genotoxicity test with mixtures of phytochemicals in environmental concentrations. Mutation Reseach/Genetic Toxicology and Environmental Mutagenesis 388(1): 27-32. https://doi.org/10.1016/s1383-5718(96)00128-3

Cao, C. J., R. J. Mioduszewski., D. E. Menking., J. J. Valdes., E. J. Katz., M. E. Eldefrawi & A. T. Eldefrawi. 1999. Cytotoxicity of organophosphate anticholinesterases. In Vitro Cellular & Developmental Biology-Animal 35(9):493-500. https://doi.org/10.1007/s11626-999-0059-8

Cao, Y., P. P. B. Eggermont & S. Terebey. 1999. Cross Burg entropy maximization and its application to ringing suppression in image reconstruction. IEEE Transactions on Image Processing 8(2): 286-292. https://doi.org/10.1109/83.743861

Caughlan, A., K. Newhouse., U. Namgung & Z. Xia. 2004. Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases. Toxicological Sciences 78(1)125–134. https://doi.org/10.1093/toxsci/kfh038

Das, T., A. Bardossy & E. Zehe. 2006. Influence of spatial variability of precipitation in a distributed rainfall-runoff model. En Predictions in Ungauged Basins: Promise and Progress (Proceedings of symposium S7 held during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil, April 2005). IAHS-AISH Publ. 303:195-203. https://iahs.info/uploads/dms/13432.28-195-203-S7-20-Das.pdf

Davies, D. B. & B. J. Holub. 1980. Toxicological evaluation of dietary diazinon in the rat. Archives of Environmental Contamination and Toxicology 9(6): 637-650. https://doi.org/10.1007/BF01055539

Flaskos, J., W. Harris., M. Sachana., D. Muñoz., J. Tack & A.J. Hargreaves. 2006. The efects of diazinon and cypermethrin on the diferentiation of neuronal and glial cell lines. Toxicology and Applied Pharmacology 219(2-3):172-180. https://doi.org/10.1016/j.taap.2006.10.033

Freshney, R. I. 2000. Culture of animal cells: A manual of basic technique. 4th. Edition. Wiley-Liss Inc. ISBN 0471348899, 9780471348894.

Gallo, M. A. & N. J. Lawryk. 1991. Organic phosphorus pesticides. En Handbook of pesticide toxicology. Academic Press. ISBN 0123341620, 9780123341624.

García, S. J., F. J. Seidler, D. Qiao & T. A. Slotkin. 2002. Chlorpyrifos targets developing glia: effects on glial fibrillary acidic protein. Developmental Brain Research 133(2):151-161. https://doi.org/10.1016/S0165-3806(02)00283-3

Guizzetti, M., S. Pathak, G. Giordano & L.G. Costa. 2005. Effect of organophosphorus insecticides and their metabolites on astroglial cell proliferation. Toxicology 215(3):182-190. https://doi.org/10.1016/j.tox.2005.07.004

Hamm, J. T., B. W. Wilson & D. E. Hinton. 1998. Organophosphate-induced acetylcholinesterase inhibition and embryonic retinal cell necrosis in vivo in the teleost (Oryzias latipes). Neurotoxicology 19(6): 853–870

Howard, P. H. 1991. Handbook of environmental fate and exposure data for organic chemicals. Vol. III. Pesticides. Lewis Publishers. ISBN 9780873713283.

John, A. R. 2003. Introduction to Animal Cell Culture Technical Bulletin. Corning Incorporated Printed in USA 8/03 KP 5M CLS-AN-042.

Kaltenbach, J. P. 1958. Nigrosin as a dye for differentiating live and dead ascites cells. Experimental Cell Research 15(1): 112-117. https://doi.org/10.1016/0014-4827(58)90067-3

Kim, J. S., S. C. Koh., S. K. Lee & T. S. Chon. 1999. Regulation of acetylcholine esterase and neurotransmitters in Oryzias latipes by diazinon. Kor. J. Environ. Toxicol. 14(3): 81–85. https://koreascience.kr/article/JAKO199911921382897.pdf

Korsak, R. J. & M. M. Sato. 1977. Effects of chronic organophosphate pesticide exposure on the central nervous system. Clinical Toxicology 11(1): 83-95. https://doi.org/10.3109/15563657708989822

Larkin, D. J. & R. S. Tjeerdema. 2000. Fate and effects of Diazinon. Reviews of Environmental Contamination and Toxicology (166): 49-82.

López, D. E. & E. Carrascal. 1987. Sensitivity of human lymphocyte chromosome to diazinon at different times during cell culture. Bulletin of Environmental Contamination and Toxicology 38(1):125-130. https://doi.org/10.1007/bf01606569

Maldonado, S., E. J. Cadena, H. Sumano, A. Martinez & L. Bermudez. 2003. Evaluation of Diazinon and ivermectin efficacy for the control of horn-fly (Haematobia irritans) on grazing cattle in Tuxpan, Veracruz, Mexico. Veterinaria México 34: 3. https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=5665

Marinovich, M., F. Ghilardi & C. L. Galli. 1996. Effect of pesticide mixtures on in vitro nervous cells: Comparison with single pesticides. Toxicology 108(3): 201-206. https://doi.org/10.1016/0300-483X(96)03303-3

Paraoanu, L. E., M. Becker-Roeck., E. Christ & P. G. Layer. 2005. Expression patterns of neurexin-1 and neuroligins in brain and retina of the chick embryo: Neuroligin-3 is absent in retina. Neuroscience Letters 395 (2):114-117. https://doi.org/10.1016/j.neulet.2005.10.076

Prendergast, M. A., A. V. Terry Jr. & J. J. Buccafuso. 1997. Chronic, low-level exposure to diisopropylfluorophosphate causes protracted impairment of spatial navigation learning. Psychopharmacology 129:183-191. https://doi.org/10.1007/s002130050179

Qiao, D., F. J. Seidler & T. A. Slotkin. 2001. Developmental neurotoxicity of chlorpyrifos modeled in vitro: comparative effects of metabolites and other cholinesterase inhibitors on DNA synthesis in PC12 and C6 cells. Environmental Health Perspectives 109(9): 909-913. https://doi.org/10.1289%2Fehp.01109909

Richards, P., M. Johnson., D. E. Ray & C. Walker. 1999. Novel targets for organophosphorus compounds. Chemico-Biological Interactions 14(119–120): 503–511. https://doi.org/10.1016/s0009-2797(99)00064-2

Roldán, L. & F. Sánchez. 2004. Secuelas neuropsicológicas de las intoxicaciones agudas por plaguicidas inhibidores de la colinesterasas. Revista de Neurología 38 (6): 591-597. https://doi.org/10.33588/rn.3806.2003553

Roy, P., H. Salminen, P. Koskimies, J. Simola, A. Smeds, P. Saukko & I. T. Huhtaniemi. 2004 Screening of some anti- androgenic endocrine disruptors using a recombinant cell-based in vitro bioassay. The Journal of Steroid Biochemistry and Molecular Biology 88(2):157-166. https://doi.org/10.1016/j.jsbmb.2003.11.005

Singh, A. K. & L. R. Drewes. 1987. Neurotoxic effects of low-level chronic acephate exposure in rats. Environmental Research 43(2):342-349. https://doi.org/10.1016/s0013-9351(87)80034-8

Sobti, R. C., A. Krishan & C. D. Pfaffenberger. 1982. Cytokinetic and cytogenetic effects of some agricultural chemicals on human lymphoid cells in vitro:organophosphates. Mutation Research/Genetic Toxicology 102(1):89-102. https://doi.org/10.1016/0165-1218(82)90149-5

Soćko, R., S. Gralewicz & R. Górny. 1999. Long-term behavioural effects of a repeated exposure to chlorphenvinphos in rats. International Journal of Occupational Medicine and Environmental Health 12(2):105-117.

Song, Y. F., S. Jing, S. Fleischmann & B. M. Wilke. 2002. Comparative study of extraction methods for determination of PAHs from contaminated soils and sediments. Chemosphere 48(9): 993-1001. https://doi.org/10.1016/S0045-6535(02)00180-7

Stephens, R., A. Spurgeon, I. A. Calvert, J. Beach, L. S. Levy & H. Berry. 1995. Neuropsychological effects of long- term exposure to organophosphates in sheep dip. Lancet 315(8958): 1135-1139. https://doi.org/10.1016/s0140-6736(95)90976-1

Sultatos, L. G. 1994. Mammalian toxicology of organophosphorus pesticides. Journal of Toxicology and Environmental Health 43(3): 271-289. https://doi.org/10.1080/15287399409531921

Verma, R. S. & A. Babu. 1995. Human Chromosomes Principles and Techniques. 2d Edition. McGraw-Hill. ISBN 0071054324, 9780071054324.

Wester, R. C., L. Sedik, J. Melendres, F. Logan, H. I. Maibach & I. Russell. 1993. Percutaneous absorption of diazinon in humans. Food and Chemical Toxicology 31(8):569-572. https://doi.org/10.1016/0278-6915(93)90206-e

Cómo citar
Sierra-Fonseca, A., Casillo-Sosa, Y., & Plenge-Tellechea, F. (2020). Efecto del diazinón sobre el cultivo de linfocitos de sangre periférica de humano: Diazinon effect on cultivated lymphocytes from human peripheral blood. TECNOCIENCIA Chihuahua, 3(2), 97-106. https://doi.org/10.54167/tch.v3i2.734

Artículos más leídos del mismo autor/a