El plaguicida glifosato incrementa la Vmax de la Ca2 +-ATPasa de membrana plasmática de eritrocito humano sin afectar su afinidad (Km) por el substrato

The pesticide glyphosate increases the Vmax of the Ca2 +-ATPase from plasma membrane of human erythrocyte without affecting its affinity (Km) for the substrate

  • Manuel Arellano-Carrillo Universidad Autónoma de Ciudad Juárez
  • Javier Vargas-Medrano Foster School of Medicine, El Paso, TX, U.S.A.
  • Jorge A. Sierra-Fonseca Universidad Autónoma de Ciudad Juárez, University of Texas at El Paso, El Paso, TX, U.S.A.
  • Fernando Plenge-Tellechea Universidad Autónoma de Ciudad Juárez
Palabras clave: ATPasa de Ca2, membrana plasmática, glifosato, calmodulina, eritrocito humano

Resumen

Los plaguicidas son un amplio grupo de sustancias heterogéneas que producen un beneficio mediante la disminución de vectores que trasmiten enfermedades, y en el control de plagas que afectan la producción agrícola. En el presente trabajo estudiamos el efecto del glifosato (GF) sobre la actividad hidrolítica de la ATPasa dependiente de Ca2+ de membrana (PMCA) de eritrocito humano en su forma nativa (sin calmodulina [CaM]) o en el complejo activo CaM-PMCA. Nuestros resultados evidenciaron que el GF produjo un efecto dual, estimulatorio e inhibitorio, y el efecto fue dosis-dependiente: concentraciones bajas de GF (0.05-0.1 mM) estimularon la hidrólisis de ATP por PMCA en su conformación nativa en un 62.5%, y en el complejo activo por CaM el incremento fue de tan solo del 20% (basados en sus respectivos controles sin GF). Ambas formas conformaciones de PMCA fueron parcialmente inhibidas con GF 0.3-0.5 y 0.4-0.5 mM. El análisis sobre el efecto de GF en la afinidad de la enzima por el substrato (ATP), mostró que GF fue capaz de incrementar significativamente el consumo de ATP (Vmax), pero solo para la conformación nativa de PMCA. Sin embargo, la afinidad de la enzima por el sustrato (Km) no fue afectada en ninguna de las dos conformaciones de PMCA. En conclusión, GF afecta la velocidad del ciclo catalítico de PMCA sin afectar su afinidad por el sustrato, ello puede deberse a una interacción del plaguicida con el C-terminal de PMCA. Este efecto, pudiera ocasionar disturbios sobre la homeostasis celular del calcio desencadenando la activación de procesos celulares tales como la apoptosis.

Abstract

Pesticides are a broad group of heterogeneous substances with great benefit to the human population, as they are used for decreasing or killing a broad number of pests involved in transmission of diseases or involved in decreasing the levels of food production. In this work we studied the effect of glyphosate (GF) over the hydrolytic activity of plasma membrane Ca2+-ATPase (PMCA) from human erythrocytes, either in their native conformational state (without calmodulin [CaM]) or in the active complex CaM-PMCA. Our results showed that GF produced a dual effect, activation and inhibition, and the effect was a dose-response effect: at low-concentrations of GF (0.05-0.1 mM), ATP hydrolysis mediated by PMCA was stimulated up to 62.5%, however with CaM the increase was only 20% (with respect to the controls without GF). Both conformational forms of PMCA were partially inhibited with GF 0.3-0.5 and 0.4- 0.5 mM respectively. An analysis performed on PMCA affinity for the substrate (ATP) showed that GF was significantly increasing the ATP consumption (Vmax) and it was only significant for PMCA in their native conformation. However, for the two conformations studied, GF was unable to significantly affect the affinity of PMCA for the substrate ATP (Km). In conclusion, GF affects the velocity of the PMCA’s catalytic cycle without affecting its affinity for ATP, and this may be due to an interaction between GF and the C-terminus of PMCA. This effect may disturb calcium homeostasis in the cell, leading to the activation of several cellular processes such as apoptosis.

Keywords: Ca2+-ATPase, plasma membrane, glyphosate, calmodulin, human erythrocyte.

Citas

Allen, B. G., S. Katz & B. D. Roufogalis. 1987. Effects of Ca2+, Mg2+ and calmodulin on the formation and decomposition of the phosphorylated intermediate of the erythrocyte Ca2+- stimulated ATPase. Biochemical Journal 244(3):617-623. https://doi.org/10.1042/bj2440617

Antunes-Madeira, M. C. & V.M. Madeira. 1990. Membrane fluidity as affected by the organochlorine insecticide DDT. Biochimica et Biophysica Acta (BBA) Biomembranes 1023(3):469-74. https://doi.org/10.1016/0005-2736(90)90141-A

Baykov, A.A., O.A. Evtushenko & S.M. Avaeva. 1988. A malachite green procedure for orthophosphate determination and its use in alkaline phosphatase-based enzyme immunoassay. Analytical Biochemistry 171(2):266-270. https://doi.org/10.1016/0003-2697(88)90484-8

Baylis, A.D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Management Science 56(4):299-308. https://doi.org/10.1002/(SICI)1526-4998(200004)56:4%3C299::AID-PS144%3E3.0.CO;2-K

Benaim, G. & L. de Meis. 1989. Activation of the purified erythrocyte plasma membrane Ca2+-ATPase by organic solvents. FEBS Letters 244(2):484-486. https://doi.org/10.1016/0014-5793(89)80589-7

Benaim, G., V. Cervino, C. Lopez-Estraño & C. Weitzman. 1994. Ethanol stimulates the plasma calcium pump from human erythrocytes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1195(1):141-148. https://doi.org/10.1016/0005-2736(94)90020-5

Benaim, G., M. Zurini & E. Carafoli. 1984. Different conformational states of the purified Ca2+-ATPase of the erythrocyte plasma membrane revealed by controlled trypsin proteolysis. Journal of Biological Chemistry 259(13): 8471-8477. https://doi.org/10.1016/S0021-9258(17)39754-5

Blasiak, J. 1995. Inhibition of erythrocyte membrane (Ca + Mg 2+ )-ATPase by the organophosphorus insecticides parathion and methylpharation. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 110(2):119-125.

Blinks, J.R., W.G. Wier, P. Hess & F.G. Prendergast. 1982. Measurement of Ca2+ concentrations in living cells. Progress in Biophysics and Molecular Biology 40(1-2):1-114. https://doi.org/10.1016/0079-6107(82)90011-6

Bolognesi, C., S. Bonatti, P. Degan, E. Gallerani, M. Peluso, R. Rabboni, P. Roggieri & A. Abbondandolo. 1997. Genotoxic activity of glyphosate and its technical formulation Roundup. Journal of Agricultural Food Chemistry 45(5):1957-1962. https://doi.org/10.1021/jf9606518

Bradberry, S. M., M, Sally, A. T. Proud & V. J. Allister. 2004. Glyphosate poisoning. Toxicological Reviews 23(3):159-167. https://doi.org/10.2165/00139709-200423030-00003

Carafoli, E. 1991. Calcium pump of the plasma membrane. Physiological Reviews 71(1):129-53. https://doi.org/10.1152/physrev.1991.71.1.129

Castillo-Sosa, Y., A. Sierra-Fonseca, A. Martínez-Martínez & F. Plenge-Tellechea. 2009. Efecto del diazinón sobre el cultivo de linfocitos de sangre periférica de humano. TECNOCIENCIA Chihuahua 3(2):97-106. https://doi.org/10.54167/tch.v3i2.734

Dalvie, M.A., E. Cairncross, A. Solomon & L. London. 2003. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa. Environmental Health 2(1):1-15. https://doi.org/10.1186/1476-069x-2-1

Dikshith, T.S., J.R. Behari, K.K. Datta & A.K. Mathur. 1975. Effect of diazinon in male rats. Histopathological and biochemical studies. Environmental Physiology & Biochemistry 5(5):293–299.

El-Demerdash, F.M., M.I. Yousef & I. E.I. Elagamy. 2001. Influence of Paraquat, Glyphosate, and Cadmium on theActivity of Some Serum Enzymes and Protein Electrophoretic Behavior (In Vitro). Journal of Environmental Science and Health, Part B 36(1):29–42. https://doi.org/10.1081/pfc-100000914

Fabiato, A. & F. Fabiato. 1979. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. The Journal of Physiology 75(5):463-505.

Garry, V., T. Danzl, R. Tarone, J. Griffith, J. Cervenka, L. Krueger, J. Whorton & R.L. Nelson. 1992. Chromosome rearrangements in fumigant appliers: possible relationship to non-Hodgkin’s lymphoma risk. Cancer Epidemiology, Biomarkers & Prevention 1(4):287-91. https://tinyurl.com/5n7xt2v6

Garry, V.F., J. Griffith, T.J. Danzl, R.L. Nelson, E.B. Whorton, L.A. Krueger & J. Cervenka. 1989. Human genotoxicity: pesticide applicators and phosphine. Science 246(4927):251–255. https://doi.org/10.1126/science.2799386

Herscher, C. J. & A. F. Rega. 1996. Pre-State kinetic study of 2+ the mechanism if inhibition of the plasma membrane Ca - ATPase by lanthanum. Biochemistry 35(47): 14917-14922. https://doi.org/10.1021/bi961879r

Hinds, T.R. & T.J. Andreasen. 1981. Photochemical cross- linking of azidocalmodulin to the (Ca2+ + Mg2+)-ATPase of the erythrocyte membrane. Journal of Biological Chemistry 256(15): 7877-7882. https://doi.org/10.1016/S0021-9258(18)43360-1

Jones, O. & A. Lee. 1986. Effect of pyrethroids on the activity of a purified (Ca2+-Mg2+)-ATPase. Pesticide Biochemistry and Physiology 25(3):420-430. https://doi.org/10.1016/0048-3575(86)90017-9

Kiely, T., D. Donaldson & A. Grobe. 2004. Pesticide industry sales and usage, 2000 and 2001 market estimates. National Service Center for Environmental Publications. United States Environmental Protection Agency. https://tinyurl.com/yzfbj3rc

Kosk-Kosicka, D. & T. Bzdega. 1988. Activation of erythrocyte Ca2+-ATPase by either self-association or interaction with calmodulin. Journal of Biological Chemistry 263(34):18184-18189. https://doi.org/10.1016/S0021-9258(19)81342-X

Lanzetta, P., L. Álvarez, P. Reinach & O. Candia. 1979. An improved assay for nanomole amounts of inorganic phosphate. Analytical Biochemistry 100(1):95-97. https://doi.org/10.1016/0003-2697(79)90115-5

Lioi, M. B., M. R. Scarfi, A. Santoro, R. Barbieri, O. Zeni, F. Salvemini, D. Di Berardino & M. V. Ursini. 1998a. Cytogenetic damage and induction of pro-oxidant state in human lymphocytes exposed in vitro to gliphosate, vinclozolin, atrazine, and DPX- E9636. Environmental and Molecular Mutagenesis 32(1):39-46. https://doi.org/10.1002/(SICI)1098-2280(1998)32:1%3C39::AID-EM5%3E3.0.CO;2-6

Lioi, M. B., M. R. Scarfi, A. Santoro, R. Barbieri, O. Zeni, F. Salvemini, D. Di Berardino & M. V. Ursini. 1998b. Genotoxicity and oxidative stress induced by pesticide exposure in bovine lymphocytes cultures in vitro. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 403(1-2):13-20. https://doi.org/10.1016/S0027-5107(98)00010-4

Lowry, O.H, N.J. Rosebrough, A.L. Farr & R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193(1):265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Lynch, T.J. & W.Y. Cheung. 1979. Human erythrocyte (Ca2+Mg2+)-ATPase: mechanism of stimulation by Ca2+. Archives of Biochemistry and Biophysics 194(1): 165-170. https://doi.org/10.1016/0003-9861(79)90606-4

Marinovich, M., M. Guizzetti & C.L. Galli. 1994. Mixtures of benomyl, pirimiphos-methyl, dimethoate, diazinon and azinphos-methyl affect protein synthesis in HL-60 cells differently. Toxicology 94(1-3):173-185. https://doi.org/10.1016/0300-483X(94)90036-1

Mody, I. & J.F. MacDonald. 1995. NMDA receptor-dependent excitotoxicity: The role of intracellular Ca2+ release. Trends in Pharmacological Sciences 16(10):356-359. https://doi.org/10.1016/S0165-6147(00)89070-7

Mualem, S. & S.J. Karlish. 1979. Is the red cell calcium pump regulated by ATP? Nature 277(5693):238-240. https://doi.org/10.1038/277238a0

Nicoreta, P., H. Thor & S. Orrenius. 1989. Cytosolic-free Ca2+ and cell killing in hepatoma 1c1c7 cells exposed to chemical anoxia. The FASEB Journal 3(1):59-64. https://doi.org/10.1096/fasebj.3.1.2910738

Niggli, V., E.S. Adunyah, J.T. Penniston & E. Carafoli. 1979a. Purification (Ca2+-Mg2+)- ATPase from Human Erythrocyte Membranes using a Calmodulin Affinity Column. Journal of Biological Chemistry 254(20):9955–9958.

Niggli, V., E.S. Adunyah, B.F. Cameron, E.A. Bababunmi & E. Carafoli. 1982. The Ca2+- pump of sickle cell plasma membranes. Purification and reconstitution of the ATPase enzyme. Cell Calcium 3(2):131-151. https://doi.org/10.1016/0143-4160(82)90010-0

Okunade, G. W., M.L. Miller, G.J. Pyne, R.L. Sutliff, K.T. O’Connor, J.C. Neumann, A.Andringa, D.A. Miller, V. Prasad, T. Doetschman, R.J. Paul & G.E. Shull. 2004. Targeted ablation of plasma membrane Ca 2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. Journal of Biological Chemistry 279(32):33742-33750. https://doi.org/10.1074/jbc.m404628200

Peixoto, F. 2005. Comparative effects of the Roundup and glyphosate on mitochondrial oxidative phosphorylation. Chemosphere 61(8):1115-1122. https://doi.org/10.1016/j.chemosphere.2005.03.044

Penniston, J.T., A.G. Filoteo, C.S. McDonough & E. Carafoli 1988. Purification Reconstitution and Regulation of Plasma Membrane Ca2+ -Pumps. Methods in Enzymology 157:340–351. https://doi.org/10.1016/0076-6879(88)57089-1

Peluso, M., A. Munnia, C. Bolognesi & S. Parodi. 1998. 32P- postlabeling detection of DNA adducts in mice treated with the herbicide Roundup. Environmental and Molecular Mutagenesis 31(1):55-59. https://tinyurl.com/5f534ufc

Pérez-Gordones, M. C., M. R. Lugo, M. Winkler, V. Cervino & G. Benaim. (2009). Diacylglycerol regulates the plasma membrane calcium pump from human erythrocyte by direct interaction. Archives of Biochemistry and Biophysics 489(1-2):55-61. https://doi.org/10.1016/j.abb.2009.07.010

Plenge-Tellechea, L.F. & J. Vargas-Medrano, J. 2003. Efecto tóxico de los plaguicidas agrícolas sobre la relajación muscular. Estudio de la Ca -ATPasa de retículo sarcoplásmico (SERCA). Ciencia en la Frontera 1(1):75-79.

Rega, A. F. & P. J. Garraham. 1986. The Ca2+ pump of plasma membranes. CRC Press. ISBN 9781315891262.

Richards, D.E., A.F. Rega & P.J. Garrahan. 1978. Two classes of site for ATP in the Ca2+-ATPase from human red cell membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 511(2):194-201. https://doi.org/10.1016/0005-2736(78)90313-9

Roufogalis, B. D. 1979. Regulation of calcium translocation across on mitochondrial oxidative phosphorylation. Chemosphere the red blood cell membrane. Canadian Journal of Physiology and Pharmacology 57(12):1331-1349.

Schwartzenbach, G., H. Senn & G.Anderegg. 1957. Komplexone. XXIX. Ein grosser Celateffekt besonderer. Helvetica Chimica Acta 40(6):1886-1900. https://doi.org/10.1002/hlca.19570400640

Shenolikar, S., T. W. Cohen, P. Cohen, A. C. Nairn & V. Perry. 1979. The role of calmodulin in the structure and regulation of phosphorylase kinase from rabbit skeletal muscle. European Journal of Biochemistry 100(2):329-337. https://doi.org/10.1111/j.1432-1033.1979.tb04175.x

Vargas-Medrano, J., J. A. Sierra-Fonseca, M. Arellano-Carrillo & F. Plenge-Tellechea. 2011. Cypermethrin, deltamethrin and glyphosate affect the activity of the Ca+-ATPase from human erythrocyte. TECNOCIENCIA Chihuahua 5(3):121-131. https://doi.org/10.54167/tch.v5i3.690

Wakabayashi, S., T. Ogurusu & M. Shigekawa. 1988. Mechanism for 3,3´,4´,5-tetrachlorosalicylanilide-induced activation of sarcoplasmic reticulum ATPase. Journal of Biological Chemistry 263(30):15304-15312. https://doi.org/10.1016/S0021-9258(19)37588-X

Williams, G.M., R. Kroes & I.C. Munro. 2000. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology and Pharmacology 31(2):117-165. https://doi.org/10.1006/rtph.1999.1371

Williams, A. L., R. E. Watson & J. M. DeSesso. 2012. Developmental and reproductive outcomes in humans and animals after glyphosate exposure: a critical analysis. Journal of Toxicology and Environmental Health, Part B: Critical Reviews 15(1):39-96 https://doi.org/10.1080/10937404.2012.632361

Publicado
2020-11-02
Cómo citar
Arellano-Carrillo, M., Vargas-Medrano, J., Sierra-Fonseca, J. A., & Plenge-Tellechea, F. (2020). El plaguicida glifosato incrementa la Vmax de la Ca2 +-ATPasa de membrana plasmática de eritrocito humano sin afectar su afinidad (Km) por el substrato: The pesticide glyphosate increases the Vmax of the Ca2 +-ATPase from plasma membrane of human erythrocyte without affecting its affinity (Km) for the substrate. TECNOCIENCIA Chihuahua, 6(2), 101-111. https://doi.org/10.54167/tch.v6i2.680

Artículos más leídos del mismo autor/a