Synthesis of an unconventional cationic surfactant precursor

Síntesis del precursor de un surfactante catiónico no convencional

  • Karla Lizette Tovar-Carrillo Universidad Autónoma de Ciudad Juárez, University of Texas at El Paso, El Paso, TX, U.S.A.
  • Rosa Alicia Saucedo-Acuña Universidad Autónoma de Ciudad Juárez
  • Alejandro Martínez-Martínez Universidad Autónoma de Ciudad Juárez
  • Fernando Plenge-Tellechea Universidad Autónoma de Ciudad Juárez
  • Takaomi Kabayashi Nagaoka University of Technology, Japón
  • Erasto Armando Zaragoza-Contreras Centro de Investigación de Materiales Avanzados, A.C.
Palabras clave: surfactante, síntesis, precursor, CMC

Resumen

Este trabajo consiste en el desarrollo de un precursor de surfactante catiónico no convencional empleando el método estándar de síntesis de éteres de Williamsom. Tratamos de diseñar un nuevo tipo de surfactantes heterogéminis con un espaciador rígido y grupos de cabeza no idénticos en la estructura del surfactante. En la síntesis sugerida establecemos el paso preliminar para la obtención un surfactante con dos anillos aromáticos como espaciador rígido. El precursor sintetizado proporciona a la estructura del surfactante un espaciador rígido debido a la presencia del grupo bifenilo, esperando que el surfactante presente una reducción tanto de la curvatura de los agregados micelares, así como de la concentración micelar crítica (CMC), en comparación con reportes previos, donde emplean surfactantes convencionales. Para establecer los pasos de la síntesis se varía la temperatura en el tiempo de reacción, así como la velocidad de adición del compuesto que contiene el grupo de cabeza, deseado que se pretende añadir a la estructura del surfactante propuesto. Para la caracterización se emplearon las técnicas de espectroscopia de infrarrojo (FT-IR) y resonancia magnética nuclear (RMN).

Abstract

The present research is about the development of a precursor of unconventional cationic surfactant by using the standard procedures of the Williamson ether synthesis. It has been intended to design a new type of heterogemini surfactant with a rigid spacer and non identical head groups in the structure of the surfactant. In the synthesis suggested, the preliminary step to obtain a surfactant structure with two aromatic rings as rigid spacer has been established. This synthesized precursor provides with a rigid spacer to the structure of the surfactant due to the presence of a biphenyl group; it is expected that, with this surfactant, it further presents a reduction on both the curvature of micellar aggregates as well as the Critical Micelle Concentration (CMC) in respect of those previous reports where conventional surfactants are used. To establish the steps of the synthesis, the temperature during the time of reaction has been varied, as well as the velocity of addition of the compound containing the head group which is pretended to be added to the surfactant structure proposed. For the characterization, the infrared spectroscopy technique (FT-IR) and the Nuclear Magnetic Resonance (NMR) were used.

Keywords: surfactants, synthesis, precursor, CMC.

Citas

Bakshi, M. S., J. Singh & G. Kaur. 2005. Antagonistic mixing behavior of cationic Gemini surfactants and triblock polymers in mixed micelles. Journal of colloid and Interface Science 285(1): 403-412. https://doi.org/10.1016/j.jcis.2004.11.013

Borse, M. S. & S. Devi. 2006. Importance of head group polarity in controlling aggregation properties of cationic Gemini surfactants. Advances in Colloid and Interface Science 123-126:387-399. https://doi.org/10.1016/j.cis.2006.05.017

Brandys, F. A. & C. Bazuin. 1996. Mixtures of an Acid- functionalized mesogen with poly (4-vinylpyridine). Chemistry of Materials 8(1): 83-92. https://doi.org/10.1021/cm950240r

Bunton, C. A., L. Robinson, J. Schaak & M. F. Stam. 1971. Catalysis of nucleophilic substitutions by micelles of dicationic detergents. Journal of Organic Chemical 36(16): 2346-2350. https://doi.org/10.1021/jo00815a033

Candau, S. J. & R. Oda. 2001. Linear viscoelasticity of salt- free wormlike micellar solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 183-185:5-14. https://doi.org/10.1016/S0927-7757(01)00535-0

Carlsson, I., H. Edlund, G. Persson, B. Lindström. 1996. Competition between monovalent and divalent counterions in surfactant systems. Journal of Colloid and Interface Sciences 180(2): 598-604. https://doi.org/10.1006/jcis.1996.0341

Chorro, C., M. Chorro, O. Dolladille, S. Partyka & R. Zana. 1998. Adsorption of Dimeric (gemini) surfactants at the aqueous solution/silica interface. Journal of Colloid and Interface Science 199(2): 169-176. https://doi.org/10.1006/jcis.1997.5341

Deacon, P. R., N. Devylder, M. S. Hill, M. F. Mahon, K. C. Molloy & G. J. Price. 2003. Organo compounds bearing mesogenic sidechains: synthesis, X-ray structures and polymerization chemistry. Journal of Organometallic Chemistry 687(1): 46-56. http://dx.doi.org/10.1016/j.jorganchem.2003.08.003

Esumi, K., A. Toyoda, M. Goino, T. Suhara, H. Fukui & Y. Koide. 1998. Adsorption characterization of cationic surfactants on titanium dioxide with quaternary ammonium groups and their adsolubilization. Journal of Colloid and Interface Science 202(2): 377-384 https://doi.org/10.1006/jcis.1998.5455

Koopal, L., E. Lee & M. Bohmer. 1995. Adsorption of cationic and anionic surfactants on charged metal oxide surfaces. Journal of Colloid and Interface Science 170(1): 85-97 https://doi.org/10.1006/jcis.1995.1075

Lee, Y. & K. Woo. 1995. Micellization of aqueous cationic surfactant solutions at the micellar structure transition concentration-based upon the concept of the pseudophase separation. Journal of Colloid and Interface Science 169(1): 34- 38. https://doi.org/10.1006/jcis.1995.1003

Li, M., H. Fu, M. Yang, H. Zheng, Y. He, H. Chen & X. Li. 2005. Micellar effect of cationic Gemini surfactant on organic/aqueous biphasic catalytic hydroformylation of 1-dodecene. Journal of Molecular Catalysis A: Chemical 235(1-2): 130-136. https://doi.org/10.1016/j.molcata.2005.03.011

Maiti, S. & P. R. Chatterji. 2000. Aggregation and polymerization of amphiphilic macromonomers with a double bond at the hydrophilic terminal. Journal of Colloid and Interface Science 232(2): 273-281 https://doi.org/10.1006/jcis.2000.7209

Menger, F. M. & C. Littau.1991. Gemini-surfactants: synthesis and properties. Journal of American Chemical Society 113(4): 1451-1459. https://doi.org/10.1021/ja00004a077

Menger, F. M., J. Keiper & V. Azov. 2000. Gemini surfactants with acetylenic spacers. Langmuir 16(5): 2062-2067. https://doi.org/10.1021/la9910576

Menger, F. M., J. Keiper, B. Mbadugha, K. Caran & L. Romsted. 2000. Interfacial composition of gemini surfactant micelles determined by chemical trapping. Laugmuir 16(23):9095-9098. https://doi.org/10.1021/la0003692

Menger, F. M. & B. Mbadugha. 2001.Gemini surfactants with a disaccharide spacer. Journal of American Chemical Society 183(5): 875-885. https://doi.org/10.1021/ja0033178

Qiuging, Y., Z. Qiong & P. Somasundaran. 2008. NMR study of micellar microstructures of cationic single-chain and Gemini surfactants and their mixtures with nonionic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 322(1-3): 40-46. https://doi.org/10.1016/j.colsurfa.2008.02.026

Rosa, M., M. C. Moran, M. G. Miguel & B. Lindman. 2007. The association of DNA and stable cationic amino acid-based vesicles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 301(1-3): 361-375. https://doi.org/10.1016/j.colsurfa.2006.12.082

Rosen, M.J. 1993. Geminis: A new generation of surfactants. Chemtech 23: 30-33.

Rosen, M., J. Gao, Y. Nakatsuji & A. Masuyama. 1994. Synergism in binary mixtures of surfactants 12. Mixtures containing surfactants with two hydrophilic and two or three hydrophobic groups. Colloids Surfaces A: Physicochemical and Engineering Aspects 88(1): 1-11. https://doi.org/10.1016/0927-7757(94)80080-4

Sharma, V., M. Borse, S. Jauhari, K. B. Pai & S. Devi. 2005. New hydroxylated cationic gemini surfactants as effective corrosion inhibitors for mild steel in hydrochloric acid medium. Tenside Surfactants Detergent 42(3):163-167. https://doi.org/10.3139/113.100253

Srivastava, S.K. & S. Raghumani. 1998. Micellar reaction of rosaniline hydrochloride carbocations with cyanide and applications of positive cooperativity model of enzyme catalysis. Journal of Surface Sciences Technology 48:48- 54.

Zana, R, H. Levy, D. Papoutsi & G. Beinert. 1995. Micellization of two triquaternary ammonium surfactants in aqueous solution. Langmuir 11(10):3694-3698. https://doi.org/10.1021/la00010a018

Zhao, J., S. Deng, J. Liu, C. Lin & O. Zheng. 2007. Fourier transform infrared investigation on the state of water in reverse micelles of quaternary ammonium Gemini surfactants C12-s-C12.2Br in n-heptane. Journal of Colloid and Interface Science 311(1): 237-242. https://doi.org/10.1016/j.jcis.2007.02.045

Zaragoza, E.A. & D. Navarro. 2003. On the role of an unconventional rigid rodlike cationic surfactant on the styrene emulsion polymerization. Kinetics, particle size and particle size distribution. Polymer 44(19): 5541-5546. https://doi.org/10.1016/S0032-3861(03)00621-9

Publicado
2020-11-04
Cómo citar
Tovar-Carrillo, K. L., Saucedo-Acuña, R. A., Martínez-Martínez, A., Plenge-Tellechea, F., Kabayashi, T., & Zaragoza-Contreras, E. A. (2020). Synthesis of an unconventional cationic surfactant precursor: Síntesis del precursor de un surfactante catiónico no convencional. TECNOCIENCIA Chihuahua, 5(1), 19-26. https://doi.org/10.54167/tch.v5i1.703