Incidencia de estrés calórico y su impacto en la fertilidad en un establo lechero

Incidence of heat stress and its impact on fertility in a dairy farm

  • Javier Antillón-Ruíz Universidad Autónoma de Chihuahua
  • Moisés Barceló-Fimbres Universidad Autónoma de Chihuahua
  • Alfredo Anchondo-Garay Universidad Autónoma de Chihuahua
  • Felipe Alonso Rodríguez-Almeida Universidad Autónoma de Chihuahua
Palabras clave: temperatura vaginal, ganado, condiciones climáticas

Resumen

El objetivo fue determinar la incidencia y efecto del estrés calórico (EC) sobre el porcentaje de preñez (PP) en un establo del municipio de Jiménez, Chihuahua. Los datos climáticos (temperatura del bulbo seco y humedad relativa) para el cálculo del índice de temperatura-humedad (ITH) se recabaron de una estación meteorológica próxima al establo. Los registros de inseminación artificial (IA) y PP fueron para un periodo de 13 meses (julio de 2009 a julio de 2010). Se corrió un análisis de regresión lineal múltiple del PP en el ITH promedio en el mes en que se llevó a cabo la IA (ITH0 ) y uno (ITH-1), dos (ITH-2) y tres (ITH-3) meses antes de la IA. También se monitoreó la temperatura vaginal en seis vacas con más de 90 d de preñez cada hora durante cuatro meses (agosto a noviembre). El efecto del EC se reflejó durante el periodo comprendido de julio a noviembre con PP de 19 a 22%, donde se presentó una reducción en el PP de 10 a 14% respecto al periodo comprendido de enero a mayo, cuando el PP fue de 29 a 33%. El ITH que mejor predijo la tasa de preñez fue el ITH-2, con una R2 de 0.91 y un coeficiente de regresión de -0.59 ± 0.057. La temperatura vaginal promedio durante los meses de monitoreo (agosto a noviembre) fue de 39.5 ± 0.2 °C, obteniendo temperaturas superiores a los 40 °C a las 18:00 h en agosto y septiembre. En conclusión, el EC observado en la región durante los meses cálidos tiene un efecto negativo sobre el PP.

Abstract

The aim of this study was to determine the incidence and effect of heat stress (HS) on the pregnancy rate (PR) in a dairy farm in the municipality of Jiménez, Chihuahua. Climatic data (dry bulb temperature and relative humidity) for calculating the temperature-humidity index (THI) were collected from a weather station near to the dairy farm. Records of artificial insemination (AI) and PR were taken for a period of 13 months (July-2009 to July-2010). A multiple linear regression analysis of the PR on the average THI of the month when the AI was conducted (THI0) and one (THI-1), two (THI-2) and three (THI-3) months before the AI. Vaginal temperature was also monitored in six cows over 90 d of pregnancy every hour for four months (August to November). The effect of HS was reflected during the period from July to November with PR of 19 to 22%, which showed a reduction of 10 to 14% compared to PR over the period from January to May, when the PR was 29 to 33%. The THI that best predicted pregnancy rate was the THI-2, with an R2 of 0.91 and a regression coefficient of -0.59 ± 0.057. The average vaginal temperature during the months of monitoring (August to November) was 39.5 ± 0.2 °C, recording temperatures above 40 °C at 18:00 h in August and September. In conclusion, HS observed in the region during the warmer months has a negative effect on the PR.

Keywords: vaginal temperature, cattle, climate conditions.

Citas

Al Katanani, Y. M., F. F. Paula-Lopes & P. J. Hansen. 2002. Effects of season and exposure to heat stress on oocyte competence in Holstein cows. Journal of Dairy Science 85(2):390-396. https://doi.org/10.3168/jds.s0022-0302(02)74086-1

Bianca, W. 1965. Reviews of the progress of dairy science. Journal of Dairy Research 32:291–345.

Bouraoui, R., M. Lahmar, A. Majdoub, M. Djemali & R. Belyea. 2002. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research 51(6):479-491. https://dx.doi.org/10.1051/animres:2002036

Buffington, D. E., A. Collazo-Aruchu, H. H. Canton, D. Pritt, W. Thatcher & R. J. Collier. 1981. Black globe-humidity index (BGHI) as comfort equations for cows. Transactions of the American Society of Agricultural and Biological Engineers 24(3):0711-0714. https://www.doi.org/10.13031/2013.34325

De Rensis, F. & R. J. Scaramuzzi. 2003. Heat stress and seasonal effects on reproduction in the dairy cow –A review. Theriogenology 60(6):1139-1151. https://doi.org/10.1016/s0093-691x(03)00126-2

Dikmen, S. & P. J. Hansen. 2009. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science 92(1):109-116. https://doi.org/10.3168/jds.2008-1370

Fuguay, J. W. 1981. Heat stress as it affects animal production. Journal of Animal Science 52(1):164-174. https://doi.org/10.2527/jas1981.521164x

Gwazdauskas, F. C., W. W. Thatcher & C. J. Wilcox. 1973. Physiological, environmental, and hormonal factors at insemination which may affect conception. Journal of Dairy Science 56(7):873-877. https://doi.org/10.3168/jds.S0022-0302(73)85270-1

Huang, C., S. Tsuruta, J. K. Bertrand, I. Misztal, T. J. Lawlor & J. S. Clay. 2008. Environmental effects on conception rates of Holsteins in New York and Georgia. Journal of Dairy Science 91(2):818- 825. https://doi.org/10.3168/jds.2007-0306

Jordan, E. R. 2003. Effects of heat stress on reproduction. Journal of Dairy Science 86:104-114. https://doi.org/10.3168/jds.S0022-0302(03)74043-0

Kumar, S., K. Ajeet & K. Meena. 2011. Effect of heat stress in tropical livestock and different strategies for its amelioration. Journal of Stress Physiology & Biochemistry 7(1):45-54. https://tinyurl.com/32y7wpdk

Mader, T. L., M. S. Davis & T. Brown-Brandl. 2006. Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science 84(3):712-719. https://doi.org/10.2527/2006.843712x

Morton, J. M., W. P. Tranter, D. G. Mayer & N. N. Jonsson. 2007. Effects of environmental heat on conception rates in lactating dairy cows: Critical periods of exposure. Journal of Dairy Science 90(5):2271-2278. https://doi.org/10.3168/jds.2006-574

Ravagnolo, O. & I. Misztal. 2002. Effect of heat stress on non return rate in Holstein cows: genetic analyses. Journal of Dairy Science 85(11):3092-3100. https://doi.org/10.3168/jds.s0022-0302(02)74396-8

Rivera, R. M. & P. J. Hansen. 2001. Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction 121(1):107-115. http://dx.doi.org/10.1530/rep.0.1210107

SAS Institute. 2003. SAS/STAT Software: Change and enhancements through release 9.2 for windows. SAS Inst. Inc., Cary, NC.

West, J. W. 2003. Effects of heat stress on production in dairy cattle. Journal of Dairy Science 86(6):2133-2134. https://doi.org/10.3168/jds.S0022-0302(03)73803-X

Wolfenson, D., Z. Roth & R. Meidan. 2000. Impaired reproduction in heat-stressed cattle: Basic and applied aspects. Animal Reproduction Science 60-61: 535-547. https://doi.org/10.1016/S0378-4320(00)00102-0

Zimbelman, R. B. & R. J. Collier. 2011. Heat hits cows sooner than we thought. Hoard´s Dairyman. April, 281

Publicado
2020-11-02
Cómo citar
Antillón-Ruíz, J., Barceló-Fimbres, M., Anchondo-Garay, A., & Rodríguez-Almeida, F. A. (2020). Incidencia de estrés calórico y su impacto en la fertilidad en un establo lechero: Incidence of heat stress and its impact on fertility in a dairy farm. TECNOCIENCIA Chihuahua, 6(2), 94-100. https://doi.org/10.54167/tch.v6i2.679

Artículos más leídos del mismo autor/a