Contenido de metales en sedimentos: una herramienta para evaluar pasivos ambientales mineros

Metal content in sediments: a tool to assess mining liabilities

  • Mélida Gutiérrez
Palabras clave: Contaminación, metal, pasivo ambiental minero, sedimento, toxicidad

Resumen

Los residuos minero-metalúrgicos que se encuentran expuestos a la intemperie son una fuente de contaminación que pueden afectar la salud de la población, deteriorar la calidad del hábitat y reducir la biodiversidad. Las situaciones donde estos residuos constituyen un riesgo potencial y permanente se denominan pasivos ambientales mineros. Las estrategias de remediación son más efectivas entre mejor se conozca la magnitud de la contaminación, su potencial de dispersión y su toxicidad potencial. En este artículo se mencionan las ventajas de usar sedimentos como medio de muestreo y algunas de las metodologías para su análisis que han sido utilizadas con éxito. Se concluye con las recomendaciones de: a) generar mapas donde se puedan visualizar fácilmente las áreas más contaminadas; b) complementar los mapas con información local sobre la movilidad de los elementos potencialmente tóxicos, su asociación con otros metales, así como las características del medio ambiente que podrían afectar su toxicidad, y; c) considerar aspectos políticos y sociales asociados con el pasivo ambiental minero.

Abstract

The mining-metallurgical wastes that lay exposed to the weather represent a source of contamination that can affect public health, deteriorate the quality of the habitat and reduce biodiversity. Cases where these wastes constitute a permanent and potential risk of contamination are known as mining environmental liability situations. Remediation strategies are more effective the better known the degree of contamination, its potential for dispersion and its potential toxicity. This article lists the advantages of using sediments as sampling medium and some methodologies of analysis that have been reported as successful. The author concludes with these recommendations, to (a) generate concentration maps where areas of highest contamination are visually identifiable, (b) provide complementary local information about mobility of potentially toxic elements, their association with other metals, and environmental characteristics that may influence their toxicity, and (c) consider political and social aspects associated with mining environmental liability .

Keywords: contamination, metal, mining environmental liability, sediment, toxicity.

Citas

Axtmann E.V. & S. N. Louma. 1991. Large-scale distribution of metal contaminants in the fine-grained sediments of the Clark Fork River, Montana USA. Applied Geochemistry, 6, 75-88. https://doi.org/10.1016/0883-2927(91)90064-V

Besser J.M., W.G. Brumbaugh, A.L. Allert, B.C. Poulton, C.J. Schmitt & C.G. Ingersoll. 2009. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water. Ecotoxicology and Environmental Safety, 72, 516-526. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1882&context=usgsstaffpub

Cannon W.F., L.G. Woodruff & S. Pimley. 2004. Some statistical relationships between sediment and soil geochemistry in northwestern Wisconsin – can stream sediment compositions be used to predict compositions of soils in glaciated terranes? Journal of Geochemical Exploration 81, 29-46. https://doi.org/10.1016/S0375-6742%2803%2900211-5

Carranza, E.J.M. 2009. Exploratory analysis of geochemical anomalies. In M. Hale (Ed.) Geochemical Anomaly and Mineral Prospectivity Mapping in GIS, Handbook of Exploration and Environmental Geochemistry, Vol 11, Elsevier BV. https://doi.org/10.1016/S1874-2734(09)70007-5

Castro Larragoitia J., U. Kramar& H. Puchelt. 1997. 200 years of mining activities at La Paz/San Luis Potosí/Mexico- Consequences to environment and geochemical exploration.- Journal of Geochemical Exploration. 58, 81-91. https://doi.org/10.1016/S0375-6742(96)00054-4

Chiprés, J.A., J. Castro-Larragoitia, & M.G. Monroy. 2009. Exploratory and spatial data analysis for determining regional background levels and anomalies of potentially toxic elements in soils from Catorce-Matehuala, Mexico. Applied Geochemistry, 24, 1579-1589. https://doi.org/10.1016/j.apgeochem.2009.04.022

Förstner U. 2004. Traceability of sediment analysis. Trends in Analytical Chemistry, 23, 217-236. https://doi.org/10.1016/S0165-9936%2804%2900312-7

García-Lorenzo M.L., C. Perez-Sirvent, M.J. Martinez-Sanchez, J. Molina-Ruiz & M.L. Tudela. 2012. Spatial distribution and sources of trace elements in sediments affected by old mining activities. Environmental Monitoring Assessment, 184 (11): 7041-7052. https://doi.org/10.1007/s10661-011-2478-8

Grunsky E.C., j.Lawrence, J. Drew & D.M. Sutphin. 2009. Process recognition in multielement soil and stream-sediment geochemical data. Appl Geochem 24:1602–1616. https://doi.org/10.1016/j.apgeochem.2009.04.024

Gutiérrez M., V.M. Reyes Gómez, M.T. Alarcón Herrera & D. Núñez López. 2012. Exploratory analysis of sediment geochemistry to determine the source and dispersion of Ba, Fe, Mn, and Cu in Chihuahua, northern Mexico. Journal of Geography and Geology, 4(4): 26-39. https://doi.org/10.5539/jgg.v4n4p26

Gutiérrez M., M.T. Alarcon-Herrera & L.M. Camacho. 2009. Geographical distribution of arsenic in sediments within the Rio Conchos Basin, Mexico. Environmental Geology, 57, 929-935. https://doi.org/10.1007/S00254-008-1371-4

Gutiérrez M, S.S. Wu & J. Peebles. 2015. Geochemical mapping of Pb- and Zn- contaminated streambed sediments in southwest Missouri, USA. Journal of Soils and Sediments, 15, 189-197. https://link.springer.com/article/10.1007/s11368-014-1010-5

Gutiérrez Ruiz M, F.M. Romero & G. González Hernández. 2007. Suelos y sedimentos afectados por la dispersión de jales inactivos de sulfuros metalicos en la zona minera de Santa Barbara, Chihuahua, México. Revista Mexicana de Ciencias Geológicas, 24 (2): 170-184. http://scielo.unam.mx/pdf//rmcg/v24n2/v24n2a5.pdf

Hudson-Edwards K., H.E. Jamieson, B.G. Lottermoser. 2011. Mine wastes: past, present, future. Elements, 7(6): 375-380. https://doi.org/10.2113/GSELEMENTS.7.6.375

Long E.R. & L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. URI http://udspace.udel.edu/handle/19716/1562

Lynch S.F.L., L.C. Batty & P. Byrne. 2014. Environmental risk of metal mining contaminated river bank sediment at redox-transitional zones. Minerals, 4, 52-73. https://tinyurl.com/2ocdw82b

MacDonald D.D., C.G. Ingersoll & T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems: Archives of Environmental Contamination and Toxicology, 39(1): 20–31. http://dx.doi.org/10.1007/s002440010075

Macintyre, M. 1998. Bunker Hill: light at the end of the tunnel. The Seattle Daily Journal of Commerce. https://www.djc.com/special/enviro98/10043970.htm

Martínez-Sanchez M.J., M.C. Navarro, C. Perez-Sirvent, J. Marimon, J. Vidal, M.L. Garcia-Lorenzo & J. Bech. 2008. Assessment of the mobility of metals in a mining-impacted coastal area. Journal of Geochemical Exploration 96, 171-182. https://doi.org/10.1016/j.gexplo.2007.04.006

Melo Cuervo, R. 2011. Evaluación de un pasivo ambiental metalúrgico. Tesis de maestría. Universidad Autónoma de San Luis Potosí, México, 64 pp. URI https://repositorioinstitucional.uaslp.mx/xmlui/handle/i/3555

Tessier A., P.G.C. Campbell & M. Bison. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7): 844-851. https://www.scirp.org/reference/ReferencesPapers.aspx?referenceID=473910

Rodríguez Vázquez L., H. Ferman Ávila, E. Torres Carrillo, L. Sáenz Macías, J. Luna Carrete, E. Herrera, G. González, D. Aranda Caro, J. Carrillo & L. Lozoya. 2010. Characterization of Topsoil Samples and Analysis of the Distribution of Heavy Metals in Parral Chihuahua, México; Journal of Environmental Science and Engineering, 4, 12-17. https://tinyurl.com/2dtz5mfw

Romero A, I. González & E. Galán. 2011. Stream water geochemistry from mine wastes in Peña de Hierro, Riotinto area, SW Spain: a case of extreme acid mine drainage. Environmental Earth Sciences, 62, 645-656. https://link.springer.com/article/10.1007/s12665-010-0554-y

Romero F.M., M.A. Armienta, M.E. Gutiérrez & G. Villaseñor. 2008. Factores geológicos y climáticos que determinan la peligrosidad y el impacto ambiental de jales mineros. Revista Internacional de Contaminación Ambiental, México, 24(2): 43-54. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992008000200001

Russi D. & J. Martinez-Alier. 2002. Los pasivos ambientales. Revista Iconos 22, 123-131. Facultad Latinoamericana de Ciencias Sociales, Ecuador. https://biblat.unam.mx/hevila/IconosRevistadecienciassociales/2002/no15/13.pdf

Salomons W, Förstner U. 1984. Sediments and the transport of Metals, In: Salomons W, Förstner U. (Eds.) Metals in the Hydrocycle, Springer –Verlag, Berlin, New York, 63-98. https://doi.org/10.1007/978-3-642-69325-0_3

Zoumis T, Schmidt A, Grigorova L, Calmano W. 2001. Contaminants in sediments: remobilization and demobilization. Science of the Total Environment 266(1-3): 195-202. https://doi.org/10.1016/s0048-9697(00)00740-3

Publicado
2020-07-08
Cómo citar
Gutiérrez, M. (2020). Contenido de metales en sedimentos: una herramienta para evaluar pasivos ambientales mineros: Metal content in sediments: a tool to assess mining liabilities. TECNOCIENCIA Chihuahua, 10(1), 1-5. Recuperado a partir de https://vocero.uach.mx/index.php/tecnociencia/article/view/578
Sección
El científico frente a la sociedad