Temporal evolution of nitrate in Meoqui-Delicias aquifer in Chihuahua, Mexico

Evolución temporal de nitrato en el acuífero Meoqui-Delicias en Chihuahua, México

Palabras clave: nitrate pollution, irrigation, semiarid, water quality, manuere leachate, Chihuahua

Resumen

The continued input of nitrate (NO3) into groundwater is a global problem, mainly associated to excess fertilizer and improper disposal of human and livestock waste. Nitrate accumulation in oxic aquifers of semiarid areas makes these zones especially susceptible to pollution. Nitrate in Meoqui-
Delicias aquifer, located in an important irrigation district in Chihuahua, Mexico, was quantified in 2021 in 63 drinking water wells.  Samples collected were analyzed in laboratory and results were compared to 2003 and 2006 data available for those wells. Nitrate values varied from 0.7 to 23.2 mg/L and 22 % of the wells contained NO3 above drinking water guidelines (10 mg NO3-N/L). A low to moderate nitrate pollution index (NPI) and a slight NO3-N variation with time was observed for most wells. Values of NO3-N/Cl < 1.0 support an anthropogenic origin of nitrate. No association was found between NO3-N and well depth. The most susceptible areas to nitrate contamination were identified as those areas with high NO3-N and increasing concentration with time. The lack of a pattern of contamination suggested leakage of manure leachate at a few points as the most likely contamination source. The consistently high NO3-N content (>10 mg/L) in three deep wells constitutes a serious concern. 

DOI: https://doi.org/10.54167/tch.v18i1.1415

Citas

Barrera, Y., (2008). Estudio hidrogeoquímico y de vulnerabilidad a la contaminación del acuífero Meoqui-Delicias del Estado de Chihuahua. MS Thesis, Universidad Autónoma de Chihuahua, Mexico.

Bijay, S. & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Appl. Sci. 3, 518. https://doi.org/10.1007/s42452-021-04521-8

Comisión Nacional del Agua (CONAGUA), (2020). Actualización de la disponibilidad media anual de agua en el acuífero Meoqui-Delicias, Estado de Chihuahua.

https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/chihuahua/DR_0831.pdf

Comisión Nacional del Agua (CONAGUA), (2022).

https://www.gob.mx/conagua/articulos/calidad-del-agua

Diaz, R.J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science 321, 926. https://doi.org/10.1126/science.1156401

Drazic, M., Gligorevic, K., Pajic M., Zlatanovic, I., Spalevic, V., Sestras, P., Skataric, G. & Dudic, B. (2020). The influence of the application technique and amount of liquid starter fertilizer on corn yield. Agriculture 10(8): 347. https://doi.org/10.3390/agriculture10080347

Ducci, D., Della Morte, R., Mottola, A., Onorati, G. & Pugliano, G. (2020). Evaluating upward trends in groundwater nitrate concentrations: an example in an alluvial plain of the Campania region (Southern Italy). Environ. Earth Sci. 79: 319. https://doi.org/10.1007/s12665-020-09062-8

Espino, M.S., Herrera, E. & Barrera, Y. (2009). Presencia de arsénico en la sección norte del acuífero Meoqui-Delicias del estado de Chihuahua, México. Tecnociencia 3(1): 8-18.

Espino, M.S., Rubio, H. & Navarro, C. (2007). Nitrate pollution in the Delicias-Meoqui aquifer of Chihuahua, Mexico. Transact. Biomed. Health, 11: 189- 196.

Espino, M.S., Navarro-Gómez, C.J. & Royo-Ochoa, M. (2011). Evaluación del origen de nitratos en el agua subterránea de Delicias, Chihuahua, usando técnicas isotópicas. Libro Científico 2011. Avances de las Mujeres en las Ciencias, las Humanidades y Todas las Disciplinas, pp. 77-90. Editorial Universidad Autónoma Metropolitana, México. ISBN: 975-607-477-519-8

Galloway, J., Raghuram, N. & Abrol, Y.P., (2008). A perspective on reactive nitrogen in a global, Asian and Indian context. Curr. Sci. India 94: 1375-1381.

Gomes, E., Antunes, I. & Leitão, B. (2023). Groundwater management: Effectiveness of mitigation measures in nitrate vulnerable zones – a Portuguese case study. Groundwat. Sustain. Develop. 21: 100899. https://doi.org/10.1016/j.gsd.2022.100899

Gutiérrez, M., Biagioni, R., Alarcón-Herrera, M. & Rivas-Lucero, B. (2018). An overview of nitrate sources and operating processes in arid and semi in an arid aquifer systems. Sci. Tot. Environ. 1513-1522. https://doi.org/10.1016/j.scitotenv.2017.12.252

Gutiérrez, M., Espino-Valdés, M.S., Calleros-Rincón, E.Y. & Alarcón-Herrera, M.T. (2021). Role of nitrogen in assessing the sustainability of irrigated areas: Case study of northern Mexico. Water Air Soil Pollut. 232: 148 https://doi.org/10.1007/s11270-021-05091-6

Gutiérrez, M., Alarcón-Herrera, M.T., Calleros-Rincón, E.Y. & Ramsey, M. (2022). Nitrate in Agricultural Soil, In: Tsadillas C. (Ed.) Nitrate Handbook: Environmental, Agricultural, and Health Effects, pp. 26-43, CRC Press, Taylor and Francis Group. ISBN 9780367338220

Hamlin, Q.F., Martin, S.I., Kendall, A.D. & Hyndman, D.W. (2022). Examining relationships between groundwater nitrate concentrations in drinking water and landscape characteristics to understand health risks, GeoHealth, 6: e2021GH000524. http://doi.org/10.1029/2021GH000524

Hansen, B., Thorling, L., Schullehner, J., Termansen, M. & Dalgaard, T. (2017). Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 7: 8566. https://doi.org/10.1038/s41598-017-07147-2

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) (2013). https://www.gob.mx/inifap/prensa/el-inifap-desarrolla-nuevas-practicas-para-fertilizar nogal-pecanero (comunicado 24 de diciembre de 2013 |

Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP) (2015). Paquete Tecnológico para Chile Jalapeño. https://www.producechihuahua.org/paqs/PT-0003Chile1.pdf

Lara, C. & Jurado, P. (2014). Paquete Tecnológico Para Producir Alfalfa en el Estado de Chihuahua. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Primera Edición. ISBN: 978-607-37-0277-5

Li, D., Zhai, Y., Lei, Y., Li, J., Teng, Y. et al. (2021). Spatiotemporal evolution of groundwater nitrate nitrogen levels and potential human health risks in the Songnen Plain, Northeast China. Ecotoxicol. Environ. Safe. 208: 111524. https://doi.org/10.1016/j.ecoenv.2020.111524

Liu, M., Xiao, C., Liang, X., Wei, H., (2022). Response of groundwater chemical characteristics to land use types and health risk assessment of nitrate in semi-arid areas: A case study of Shuangliao City, Northeast China. Ecotoxicol. Environ. Safe. 236: 113473. https://doi.org/10.1016/j.ecoenv.2022.113473

Linhoff, B. (2022). Deciphering natural and anthropogenic nitrate and recharge sources in arid region groundwater. Sci. Tot. Environ. 848: 157345. https://doi.org/10.1016/j.scitotenv.2022.157345

Mahlknecht, J., A. Horst, G. Hernández Limón & R. Aravena. (2008). Groundwater geochemistry of the Chihuahua City region in the Rio Conchos Basin (northern Mexico) and implications for water resources management. Hydrol. Processes 22:4736-4751.

Mateo-Sagasta, J. & Albers, J. (2018). Salts. In: More People, More Food, Worse Water? Mateo-Sagasta, J.; Marjan Zadeh, S.; Turral, H. (Eds.) Food and Agriculture Organization of the United Nations and International Water Management Institute. pp. 93-98, Rome.

McCullough, E.B. & Matson, P.A. (2016). Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico. PNAS, 113: 4609–4614. https://doi.org/10.1073/pnas.1011602108.

Millar, N., Urrea, A., Kahmark, K., Scherbak, I., Robertson, G.P. & Ortiz-Monasterio, I. (2018). Nitrous oxide (N2O) flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico. Agr. Ecosyst. Environ. 261: 125–132. https://doi.org/10.1016/j.agee.2018.04.003

Mukherjee, I. & Singh, U.K., (2021). Characterization of groundwater nitrate exposure using Monte Carlo and Sobol sensitivity approaches in the diverse aquifer systems of an agricultural semiarid region of Lower Ganga Basin, India. Sci. Tot. Environ. 787: 147657. https://doi.org/10.1016/j.scitotenv.2021.147657

Norton, J. & Ouyang, Y. (2019). Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 10: 1931. https://doi.org/10.3389/fmicb.2019.0193

Obeidat, M.M., Awawdeh, M., Abu Al-Rub, F. & Al-Ajlouni, A. (2012). An Innovative Nitrate Pollution Index and Multivariate Statistical Investigations of Groundwater Chemical Quality of Umm Rijam Aquifer (B4), North Yarmouk River Basin, Jordan, In: Water Quality Monitoring and Assessment, Voudouris K, Voutsa D (Eds.) IntechOpen, pp. 169-188. https://doi.org/10.5772/32436

Özkaraova, E.B., Aydin, S. & Gemechu, A.U. (2022). Screening of organic substrates for a permeable biobarrier to remediate nitrate contaminated groundwater, Water Environ. J. 364: 3–55. https://doi.org/10.1111/wej.12755

Panneerselvam, B., Karuppannan, S. & Muniraj, K. (2020). Evaluation of drinking and irrigation suitability of groundwater with special emphasizing the health risk posed by nitrate contamination using nitrate pollution index (NPI) and human health risk assessment (HHRA), Hum. Ecol. Risk Assess. https://doi.org/10.1080/10807039.2020.1833300

Rascón, B. (2011). Estudio hidrogeoquímico y de vulnerabilidad a la contaminación de la porción Sur del acuífero Meoqui-Delicias, del Estado de Chihuahua. M.S. Thesis, Universidad Autónoma de Chihuahua., Mexico.

Re, V., Kammoun, S., Trabelsi, R., Zouari, K., Matiatos, I., Allais, E. & Daniele, S. (2021). A critical assessment of widely used techniques for nitrate source apportionment in arid and semi-arid regions. Sci. Tot. Environ. 775: 145688. https://doi.org/10.1016/j.scitotenv.2021.145688

Reyes-Gómez, V.M., Alarcón-Herrera, M.T., Gutiérrez M. & Núñez-López, D. (2015). Arsenic and fluoride variations in groundwater of an endorheic basinundergoing land-use changes. Archives of Environmental Contaminationand Toxicology 68: 292-304.

Rivas-Lucero. B., Chacón-Sotelo, J., Segovia-Lerma, A. & Morales-Morales, H. (2008). Valoración de la distribución espacial de establos lecheros para la gestión de los residuos generados en la cuenca de Delicias, Chihuahua. Rev. Latinoam. Rec. Nat. 4(2): 185-193.

Rivas-Lucero, B.A., Gutiérrez, M., Magaña-Magaña, J.E., Márquez-Salcido, F. et al. (2018). Salt content of dairy farm effluents as an indicator of salinization risk to soils. Soil Syst. 2: 61. https://doi.org/10.3390/soilsystems2040061

Rudolph, D.L., Devlin, J.F. & Bekeris, L. (2015). Challenges and a strategy for agricultural BMP monitoring and remediation of nitrate contamination in unconsolidated aquifers. Ground Water Monit. Remediat. 35: 97–109. https://doi.org/10.1111/gwmr.12103

Sapkota, A., Haghverdi, A., Avila, C.E., Ying, S.C. (2020). Irrigation and greenhouse gas emissions: A review of field-based studies, Soil Syst. 4: 20. https://10.3390/soilsystems4020020

Secretaría de Economía (2001). NMX-AA-073-SCFI-2001. Water Analysis - Determination of total chlorine in natural water, wastewaters and treated – Test Method. Mexico.

Tesoriero, A.J., Stratton, L.E. & Miller, M.P. (2021). Influence of redox gradients on nitrate transport from the landscape to groundwater and streams. Sci. Tot. Environ. 800: 150200. https://doi.org/10.1016/j.scitotenv.2021.150200

USEPA (2007). Biological nutrient removal processes and costs. EPA 823-R-07-002. Washington, DC: United States Environmental Protection Agency, Office of Water.

Villalobos-Gutiérrez, M.N. (2021). Evolución Espacial y Temporal de la Presencia de Nitratos en el Acuifero Meoqui-Delicias, Chihuahua. M.S. Thesis, Universidad Autónoma de Chihuahua. Mexico. 65 pp.

Vitousek, P.M., Naylor, R., Crews, T., David, M.B., Drinkwater, L.E. et al. (2009). Nutrient imbalances in agricultural development. Science 324: 1519–1520. https://doi.org/10.1126/science.1170261

Walvoord, M.A., Phillips, F.M., Stonestrom, D.A., Evans, R.D., Hartsough, P.C., Newman, B.D. & Striegl, R.G. (2003). A reservoir of nitrate beneath desert soils. Science 7(302): 1021-1024. https://doi.org/10.1126/science.1086435

Xiao, Y., Hao, Q., Zhang, Y., Zhu, Y., Yin, S., Quin, L. & Li, X. (2022). Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Tot. Environ. 802: 149909. https://doi.org/10.1016/j.scitotenv.2021.149909

Xiao, Y., Liu, K., Hao, Q., Xiao, D., Zhu, Y., Yin, S. & Zhang, Y. (2022). Hydrogeochemical insights into the signatures, genesis and sustainable perspective of nitrate enriched groundwater in the piedmont of Hutuo watershed, China. Catena 212: 106020. https://doi.org/10.1016/j.catena.2022.106020

Publicado
2024-04-22
Cómo citar
Espino Valdés, M. S., Villalobos Gutiérrez, M. N., Gutiérrez, M., Silva Hidalgo, H., & Pinales Munguía, A. (2024). Temporal evolution of nitrate in Meoqui-Delicias aquifer in Chihuahua, Mexico: Evolución temporal de nitrato en el acuífero Meoqui-Delicias en Chihuahua, México. TECNOCIENCIA Chihuahua, 18(1), e1415. https://doi.org/10.54167/tch.v18i1.1415