Impacto de factores de concentración en la calidad del agua subterránea en el norte-centro de México

Impact of enrichment factors to groundwater quality in north-central Mexico

Palabras clave: acuífero aluvial, arsénico, fluoruro, nitratos, cuenca endorreica, interacción agua-roca

Resumen

Se analizaron datos de calidad de agua subterránea de los estados de Chihuahua, Coahuila y Durango (N=704) para determinar la distribución de tres contaminantes comúnmente presentes en el área, arsénico (As), fluoruro (F), y nitrato (NO3-N), y determinar el efecto de factores de enriquecimiento. Dichos factores incluyen evaporación, intemperismo de rocas, HCO3, y solidos disueltos totales (SDT). Se construyeron mapas de concentración y se obtuvieron correlaciones para contaminantes entre sí, así como entre los contaminantes y factores de enriquecimiento. Los resultados muestran que los procesos más importantes de enriquecimiento de As y F son el intemperismo de rocas y en segundo lugar la evaporación, y para NO3-N el uso de suelo (agricultura) y la evaporación. La correlación entre As y F fue moderada (ρ= 0.417, p< 0.001) y no se encontró correlación entre As o F con NO3-N, SDT ni HCO3, lo que sugiere que la variación de tanto SDT como HCO3 dentro del área de estudio son insuficientes para afectar en forma significativa el contenido de As ó F. Asimismo, no se encontró una diferencia significativa entre el contenido de As ó F entre cuencas cerradas o cuencas abiertas. En contraste, NO3-N se encontró fuertemente asociado con SDT y ambos SDT y NO3-N concentrados en cuencas cerradas. Consecuencias indirectas de este estudio incluyen la identificación de 23 pozos con concentraciones extremas de As-F y la comparación de coberturas de datos entre los tres estados bajo estudio.

DOI: https://doi.org/10.54167/tecnociencia.v16i2.953

Citas

Ahmad, A., van der Wens, P., Baken K., de Waal, L., Bahattacharya, P. & Stuyfzand, P. (2020). Arsenic reduction to <1 µg/L in Dutch drinking water. Environment International, 134:105253. https://doi.org/10.1016/j.envint.2019.105253

Alarcón-Herrera, M. T., Martin-Alarcon, D. A., Gutiérrez M., Reynoso-Cuevas L., Martín-Domínguez A., Olmos-Márquez, M. A. & Bundschuh J. (2020). Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Science of the Total Environment, 698:134168. https://doi.org/10.1016/j.scitotenv.2019.134168

Alarcón-Herrera, M. T. & Gutiérrez, M. (2022). Geogenic arsenic in groundwater: Challenges, gaps, and future directions. Current Opinion in Environmental Science & Health, 27, 100349. https://doi.org/10.1016/j.coesh.2022.100349

Burillo, J.C., Ballinas, L., Burillo, G., Guerrero-Lestarjette, E., Lardizabal-Gutierrez, D., & Silva-Hidalgo, H. (2021). Chitosan hidrogel synthesis to remove arsenic and fluoride ions from groundwater. Journal of Hazardous Materials, 417, 126070. https://doi.org/10.1016/j.jhazmat.2021.126070

Cao, W., Gao, Z., Guo, H., Pan, D., Qiao, W., Wang, S., Ren, Y. & Li, Z. (2022). Increases in groundwater arsenic concentrations and risk under decadal groundwater withdrawal in the lower reaches of the Yellow River basin, Henan Province, China. Environmental Pollution, 296, 118741. https://doi.org/10.1016/j.envpol.2021.118741

Dodds, W. K. & Welsh, E. B. (2000). Establishing nutrient criteria in streams. Journal of the North American Benthological Society, 19(1), 186–196. https://bit.ly/3BqWp7w

Eguiluz-deAntuñano, S., Aranda-García, M. & Marrett, R. (2000). Tectónica de la Sierra Madre Oriental, México. Boletín de la Sociedad Geológica Mexicana, 53, 1-26. https://doi.org/10.18268/BSGM2000v53n1a1

Espino, M.S. (2019). Calidad del agua subterránea en el estado de Chihuahua: retos y logros en la búsqueda de soluciones sustentables para el agua de consumo, In: Problemáticas del agua y medidas sustentables en estados desérticos de México, caso Chihuahua, Dévora Isiordia G. E. & Cervantes Rendón E. (Eds.) Publicaciones Instituto Tecnológico de Sonora, Hermosillo, Son. (pp. 63-70). ISBN: 978-607-609-205-7

Espino, M.S., Rubio-Arias, H. O., & Navarro C. J. (2007). Nitrate pollution in the Delicias-Meoqui aquifer of Chihuahua, Mexico. WIT Transactions Biomedical Health, 11, 189-196. https://bit.ly/3vmEU4t

Feng, S., Guo, H., Sun, X., Han, S. & Ying, L. (2022). Relative importance of hydrogeochemical and hydrogeological processes on arsenic enrichment in groundwater of the Yinchuan Basin, China. Applied Geochemistry, 137:105180.https://doi.org/10.1016/j.apgeochem.2021.105180

Ferrari, L., Valencia-Moreno, M. & Bryan, S. (2007). Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America, In: Geology of México: Celebrating the Centenary of the Geological Society of México, Alaniz-Álvarez, S. A., & Nieto-Samaniego, Á. F., (Eds.), Geological Society of America Special Paper 422, p. 1–39. https://doi.org/10.1130/2007.2422(01) .

Gibbs, R. J. (1970). Mechanisms controlling world’s water chemistry. Science, 170, 1088–1090. https://doi.org/10.1126/science.170.3962.1088 .

González-Horta, C., Ballinas-Casarrubias, L., Sánchez-Ramírez, B., Ishida, M. C., Barrera-Hernández, A., Gutiérrez-Torres, D., Zacarías, O. L., Saunders, R. J., Drobná, Z., Méndez, M. A., Garcia-Vargas, G., Loomis, D., Styblo, M. & DelRazo L. M. (2015). A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. International Journal of Environmental Research and Public Health, 12, 4587-4601. https://doi.org/10.3390/ijerph120504587

González-Partida, E., Camprubí, A., Carrillo-Chavez, A., Díaz-Carreño, E. H., González-Ruiz, L. E., Farfán-Panamá, J. L., Cienfuegos-Alvarado, E., Morales-Puente, P. & Vázquez-Ramírez, J. T. (2019). Giant fluorite mineralization in central Mexico by means of exceptionally low salinity fluids: an unusual style among MVT deposits. Minerals, 9, 35. https://doi.org/10.3390/min9010035

Gorelick, S. M., & Zheng, C. (2015). Global change and the groundwater management challenge, Water Resources Research, 51, https://doi.org/10.1002/2014WR016825 .

Grünberger, O. (2005). El concepto de playa. In Grünberger A., Reyes-Gómez V.M., Janeau J. L. (eds) Las playas del Desierto Chihuahuense (parte mexicana), Instituto de Ecología A.C.-IRD, Xalapa, Mexico, 360 pp. ISBN: 970-709-048-0

Guo, H.M., Yang, S., Tang, X., Li, Y., & Shen, Z. (2008). Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Science of the Total Environment 393, 131–144. https://doi.org/10.1016/j.scitotenv.2007.12.025

Gutiérrez, M., Espino-Valdés, M. S., Alarcón-Herrera, M. T., Pinales-Munguía A., & Silva-Hidalgo, H. (2021a). Arsénico y flúor en agua subterránea de Chihuahua: origen, enriquecimiento y tratamientos posibles. Tecnociencia Chihuahua, XV(2), 95-108. https://doi.org/10.54167/tecnociencia.v15i2.828

Gutiérrez, M., Calleros-Rincón, E. Y., Espino-Valdés M. S., & Alarcón-Herrera M. T. (2021b). Role of nitrogen in assessing the sustainability of irrigated areas: Case study of northern Mexico. Water, Air and Soil Pollution, 232(4), 1-13. https://doi.org/10.1007/s11270-021-05091-6

Hamlin, Q. F., Martin, S. I., Kendall, A. D., & Hyndman, D.W. (2022). Examining relationships between groundwater nitrate concentrations in drinking water and landscape characteristics to understand health risks. GeoHealth, 6, e2021GH000524. https://doi.org/10.1029/2021GH000524

He, X., Li, P., Ji, Y., Wang, Y., Su, Z. & Elumalai, V. (2020). Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution and management. Exposure and Health, 12:355-368. https://doi.org/10.1007/s12403-020-00347-8

Jiménez-Córdova, M. I., Sánchez-Peña, L. C., Barrera-Hernández, A., González-Horta, C., Barbier, O. & Del Razo, L. M. (2019). Fluoride exposure is associated with altered metabolism of arsenic in an adult Mexican population. Science of the Total Environment 684, 621-628. https://doi.org/10.1016/j.scitotenv.2019.05.356

Kumar, M., Goswami, R., Patel, A. K., Srivastava, M., & Das, N. (2020). Scenario, perspectives, and mechanism of arsenic and fluoride co-occurrence in the groundwater: A review. Chemosphere, 249, 126126. https://doi.org/10.1016/j.chemosphere.2020.126126

Lee, J. I., Hong, S., Lee C., & Park, S. (2021). Fluoride removal by thermally treated egg shells with high adsorption capacity, low cost, and easy acquisition. Environmental Science and Pollution Research, 28, 35887-35901. https://doi.org/10.1007/s11356-021-13284-z

Márquez, M. A. O., Rivero, J. M. O., Herrera, M. T. A., Estrada, E. S., Vega-Mares, J. H., & Aragón, M. C. V. (2020). Performance of a pilot subsurface flow treatment wetland system used for arsenic removal from reverse osmosis concentrate, in the municipality of Julimes, Chihuahua, Mexico. Ingeniería y Universidad, 24, 10. https://doi.org/10.11144/Javeriana.iued24.ppsf

McMahon, P. B., Brown C. J., Johnson T. D., Belitz K., & Lindsey B. D. (2020). Fluoride occurrence in United States groundwater, Science of the Total Environment 732, 139217. https://doi.org/10.1016/j.scitotenv.2020.139217

Mora, A., Torres-Martinez J. A., Moreau, C., Bertrand, G., & Mahlknecht J. (2021). Mapping salinization and trace element abundance (including As and other metalloids) in the groundwater of north-central Mexico using a double-clustering approach. Water Research, 205:117709. https://doi.org/10.1016/j.watres.2021.117709

Mukherjee, I., & Singh, U. K. (2022). Environmental fate and health exposures of the geogenic and anthropogenic contaminants in potable groundwater of Lower Ganga Basin, India. Geoscience Frontiers, 101365. https://doi.org/10.1016/j.gsf.2022.101365

Navarro, O., Gonzalez, J., Júnez-Ferreira, H.E., Bautista C-Fa., & Cardona, A. (2017). Correlation of arsenic and fluoride in the groundwater for human consumption in a semiarid region of Mexico. Procedia Engineering 186, 333-340. https://doi.org/10.1016/j.proeng.2017.03.259

Ortiz Letechipia, J., González-Trinidad, J., Júnez-Ferreira, H. E., Bautista-Capetillo, C., Robles-Rovelo, C.O., Contreras Rodríguez, A.R., & Dávila-Hernández, S. (2022). Aqueous arsenic speciation with hydrogeochemical modeling and correlation with fluorine in groundwater in a semiarid region of Mexico. Water, 14, 519. https://doi.org/10.3390/w14040519

Ortiz-Pérez, M.A. (2010). Clasificación ecogeográfica de cuencas hidrográficas: El caso de México. En: Las Cuencas Hidrográficas de México: Diagnóstico y Priorización, H. Cotler-Ávalos (Ed.) SEMARNAT, Pluralia Ediciones e Impresiones S.A. de C.V, México, (pp. 25-27).

Puccia, V., Limbozi, F., & Avena, M. (2018). On the mechanism controlling fluoride concentration in groundwaters of the south of the Province of Buenos Aires, Argentina: adsorption or solubility? Environmental Earth Sciences 77, 495. https://doi.org/10.1007/s12665-018-7678-x

Reyes-Gómez, V.M., Alarcón-Herrera, M. T., Gutiérrez, M., & Núñez López, D. (2013). Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: contaminant levels, potential sources, and co-occurrence. Water Air Soil Pollution 224(2), 1433. https://doi.org/10.1007/s11270-013-1433-4

Reyes-Gómez, V. M., Gutiérrez, M., Nájera-Haro, B., Núñez-López, D., & Alarcón-Herrera, M. T. (2017). Groundwater quality impacted by land use/land cover change in a semi-arid region of Mexico. Groundwater for Sustainable Development, 5, 160-167. https://doi.org/10.1016/j.gsd.2017.06.003

Rubio-Arias, H. O., Ochoa-Rivero, J. M., de Lourdes Villalba, M., Barrientos-Juárez, E., De-la-Mora-Orozco, C., & Rocha-Gutiérrez, B. A. (2021). Eliminating heavy metals from water with filters packed with natural zeolite of varying sizes. Tecnología y ciencias del agua, 12(6), 282-327. https://doi.org/10.24850/j-tyca-2021-06-07

Scanlon, B. R., Nicot, J. P., Reedy, R. C., Kurtzman, D., Mukherjee, A., & Nordstrom, D. K. (2009). Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Applied Geochemistry, 24, 2061–2071. https://doi.org/10.1016/j.apgeochem.2009.08.004

Scanlon B. R., Rateb, A., Pool, D. R., Ward, S., Save, H., Sun, A., Long, D., & Fuchs, B. (2021). Effects of climate and irrigation on GRACE-based estimates of water storage changes in major US aquifers. Environmental Research Letters, 16, 094009. https://doi.org/10.1088/1748-9326/ac16ff

Sierra-Sánchez, A. G., Castillo-Suárez, L. A., Martínez-Miranda, V., Linares-Hernandez, I., & Teutli-Sequeira, E. A. (2022). As and F− cooccurrence in drinking water: critical review of the international scenario, physicochemical behavior, removal technologies, health effects, and future trends. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-19444-z

Stuart, M., & Lapworth, D. J. (2013). Emergent organic contaminants in groundwater, In: Smart Sensors for Real-Time Water Quality Monitoring, S. C. Mukhopadhyay & A. Mason (Eds.), Springer, (pp.259-284). https://doi.org/10.1007/978-3-642-37006-9

Su, H., Kong, W., Kang, N., Liu, J., & Li, Z. (2021). Hydogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China. Environmental Research 200, 111476. https://doi.org/10.1016/j.envres.2021.111476

Sunkari, E. D., Adams, S. J., Okyere, M. B., & Bhattacharya, P. (2022). Groundwater fluoride contamination in Ghana and the associated human health risks: Any sustainable mitigation measures to curtail the long term hazards? Groundwater for Sustainable Development, 100715. https://doi.org/10.1016/j.gsd.2021.100715

Publicado
2022-07-28
Cómo citar
Gutiérrez, M., Alarcón-Herrera, M. T., & Ochoa-Rivero, J. M. (2022). Impacto de factores de concentración en la calidad del agua subterránea en el norte-centro de México : Impact of enrichment factors to groundwater quality in north-central Mexico . TECNOCIENCIA Chihuahua, 16(2), e 953. https://doi.org/10.54167/tecnociencia.v16i2.953
Sección
Medio Ambiente y Desarrollo Sustentable