Review of agricultural and medicinal applications of basidiomycete mushrooms

Revisión sobre las aplicaciones de las setas en agricultura y medicina

Palabras clave: Antibacterial, antifungal and helminticidal activities, medicinal applications, polisaccharides, lectines

Resumen

White-rot fungi consist of a group of basidiomycetes that are able to remove lignin, cellulose, and hemicellulose concurrently at approximately equal rates. These fungi produce three enzymes commonly known as lignin-modifying enzymes (LMEs) that are responsible for the degradation of wood components. These enzymes are produced during the secondary metabolism under an obligatory aerobic process and are induced by nutrient starvation, low pH, and high concentrations of Mn. We focused this review on the source of environmental organopollutants and the role that these white-rot fungi play on the transformation or mineralization of the environmental contaminants. These recalcitrant compounds originate mainly from human contamination. White-rot fungi or their enzymes showed mineralization of many environmental contaminants such as 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), 2, 4, 6-Trinitrotoluene (TNT); polychlorinated biphenyls (PCB’s); polycyclic aromatic hydrocarbons (PAH’s); wood preservatives; some synthetic dyes; and bleach-derived from paper producing plants.

DOI: https://doi.org/10.54167/tch.v2i2.1387

Citas

ALEXOPOLOUS, C. J., Mims, C. W. & Blackwell, M. (1996). «Introductory mycology.» 4th ed., New York. John Wiley and Sons. ISBN: 978-0-471-52229-4

ANKE, T., Best. H., Mocek, U. & Steglich, W. (1983). Antibiotics from basidiomyctes. XVII. Strobilurins C and oudemansin B, two new antifugal metabolites from Xerula species (Agaricales). J. Antibiot. 36(6): 661-666. https://doi.org/10.7164/antibiotics.36.661

ANKE, T., Oberwinkler, F., Steglich, W. & Schramm, G. (1977). The strobilurins new antifugal antibiotics from the basidiomycete Strobilurus tenacellus. J. Antibiotic. 30(10): 806-810. https://doi.org/10.7164/antibiotics.30.806

BARRON, G. (1977). “The nematode-destroying fungi “. Topics in Mycobiology No. 1. Journal of Basic Microbiology 19(4): 309. https://doi.org/10.1002/jobm.19790190412

BRIAN, D. (1951). Antibiotics produced by fungi. The botanical Review 17: 357-430. https://doi.org/10.1007/BF02879038

BYERRUM, R.U., Clarke, D.A., Ringler, R.L., Stevens, J.A. & Stock, C.C. & Lucas, E. H. (1957). Tumor inhibitors in Boletus edulis and other Holobasidiomycetes. Antibiot. Chemother. (Northfield) 7(1): 1-4. https://pubmed.ncbi.nlm.nih.gov/24544235/

CHAMPAVIER, Y., Pommier, M., Arpin N., Voiland, A. & Pellon, G. (2000). 10-oxo-trans-8-decenoic acid (ODA): production, biological activities, and comparison with other hormone-like substances in Agaricus bisporus. Enzyme Microb. Technol. 26(1-4): 243-251. https://doi.org/10.1016/s0141-0229(99)00139-8

CHIHARA, G. (1992) Immunopharmacology of lentinan, a polysaccharide isolated from Lentinus edodes: Its applications as a host defense potentiator. Int. J. Orintal Med. 17: 57-77. https://cir.nii.ac.jp/crid/1570572699689383040

CRAWFORD, E.D. (2003). Epidemiology of prostate cancer. Urology 62(1): 3-12. https://doi.org/10.1016/j.urology.2003.10.013

DAFERNER, M., Anke, T., Hellwig, V., Steglich, W. & Sterner, O. (1998). Strobilurin M, tetrachloropyrocatechol and tetrachloropyrocatechol methyl ether; new antibiotics from a Mycena species. J. Antibiot (Tokio) 51(9): 816-822. https://doi.org/10.7164/antibiotics.51.816

FREDENHAGEN, A., Kuhn, A., Peter, H., Cuomo, V. & Giuliano, U. (1990). Strobilurins F, G, and H, three new antifungal metabolites from Bolinea lutea: fermentation, isolation and biological activity. J. Antibiot (Tokio) 43(6): 655-660. https://doi.org/10.7164/antibiotics.43.655

FUJII, T., Maeda, H., Suzuki, F. & Ishida, N. (1978). Isolation and characterization of a new antitumor polysaccharide, KS-2, extracter from culture mycelia of Lentinus edodes. J. Antibiot. (Tokio) 31(11): 1079-1090. https://doi.org/10.7164/antibiotics.31.1079

GAO, J. J., Min, B.S., Ahn, E. M., Nakamura, N., Lee H. K. & Hattori, M. (2002). New triterpene aldehyde, licialdehydes A-C, from Ganoderma lucidum and their cytoxicity against murine and human tumor cells. Chem. Pharm. Bull (Tokyo) 50(6): 837-840. https://doi.org/10.1248/cpb.50.837

GAO, Y., Zhou, S., Jiang, W., Huang, M. & Dai, X. (2003). Effect of ganapoly® (a Ganoderma lucidum polysaccharide extract) on the immune functions in advanced-stage cancer patients. Immunol. Invest 32(3): 201-215. https://doi.org/10.1081/imm-120022979

GARRETT, R. H. & Grishman, C. M. (1999). “Biochemistry”. Second edition ed. Saunders College Publishing, San Diego. ISBN: 0030223180.

GATTI, D. & Tzagoloff, A. (1990). Structure and function of the mitochondrial bc1 complex. Properties of the complex in temperature-sensitive cor1 mutants. J. Biol. Chem. 265(35): 1468-1475. https://pubmed.ncbi.nlm.nih.gov/2174874/

GERASIMENYA, V.P., Efremenkova, O.V., Kamzolkina, O.V., Bogush, T.A., Tolstych. I. V. & Zenkova, V.A. (2002). Antimicrobial and antitoxical action of edible and medicinal mushroom Pleurotus ostreatus (Jacq.;Fr.) Kumm. Extracts. Int. J. Med. Mushr. 4(2): 106. https://goo.su/Qi0m

GRIFFIN, D.H. (1994). “Fungal Physiology.” Second Edition ed. Wiley-Liss, New York. ISBN: 978-0-471-16615-3.

HATVANI, N. (2001). Antimicrobial effect of the culture fluid of Letinus edodes mycelium growth in submerged liquid culture. Int. J. Antimicrob. Agents. 17(1):71-74. https://doi.org/10.1016/s0924-8579(00)00311-3

HERMS, S., Seehaus, K., Koehle, H. & Conrath, U. (2002). A strobilurin fungicide enhances the resistance of tobacco against Tobacco mosaic virus and Pseudomonas syringaes pv. tabaci. Plant Physiol. 130(1):120-127. https://doi.org/10.1104/pp.004432

HIRASAWA, M., Shouji, N., Neta, T., Fukushima, K. & Tokada, K. (1999). Three kinds of antibacterial substances from Letinus edodes (Berk.) Sing. (Shiitake and edible mushroom). Int. J. Antimicrob. Agents. 11(2): 151-157. https://doi.org/10.1016/s0924-8579(98)00084-3

IAIN, M.C. & Brown, R. M. (1995). Microscopy of curdlan structure. Department of Botany, The University of Texas at Austin, Austin, Tx. https://botany.utexas.edu/lab/ongres/icheese.htm

IKEKAWA, T., Ikeda, Y., Yoshioka, Y., Nakanishi, K., Yokoyama, E. & Yamazaki, E. (1982). Studies on antitumor polysaccharides of Flammulina velutipes (Curt. Ex Fr.) Sing. II. The structure of EA3 and further purification of EA5. Pharmacobyodin 5(8): 576-581. https://doi.org/10.1248/bpb1978.5.576

IWATSUKY, K. Akihisa, T. Tokuda, H., Ukiya, M., Oshikubo, M., Kimura, Y., Asano, T. & Nishino, H. (2003). Lucidinic acids P and Q, Methyl lucidenate P, and other triperpenoids from the fungus Ganoderma lucidum and their inhibitory effects on epstein-barr virus activation. J. Nat. Prod. 66(12): 1552-1585. https://doi.org/10.1021/np0302293

JANG, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Pezzuto. J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297): 218-220. https://doi.org/10.1126/science.275.5297.218

JOHANSSON, M., Sterner, O., Labischinski, H. & Anke, T. (2001). Coprinol, a new antibiotic cuparane fron Coprinus species. Z. Naturforsch C J Biosci 56(1-2): 31-34. https://doi.org/10.1515/znc-2001-1-205

Kitamura, S., Hori, T., Kurita, K., Takeo, K., Hara, C., Itoh, W., Tabata, K., Elgsaeter, A. & Stokke, B. (1994). An antitumor, branched (1-˃3)-beta-D-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydr. Res. 263(1): 111-121. https://doi.org/10.1016/0008-6215(94)00156-1

LAM, S. K. & Ng, M. L. (2001a). First simultaneous isolation of ribosome inactivating protein an antifungal protein from a mushroom (Lyophyllum shumeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophy. 393(2): 271-280. https://doi.org/10.1006/abbi.2001.2506

LAM, S. K. & Ng, T. B. (2001b). Hypsin, a novel thermostable ribosome- inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem. Biophysic. Res. Commun. 285(4): 1071-1075. https://doi.org/10.1006/bbrc.2001.5279

MA, Y., Mizuno, T. & Ito, H. (1991). Antitumor activity of some polysaccharides isolated from a Chinese mushroom, ‘huangmo’, the fruiting body of Hohenbuehelia serotina. Agric. Biol. Chem. 55(11): 2701-2710. https://doi.org/10.1271/bbb1961.55.2701

MIZUNO, T. (1995). Bioactive molecules of mushrooms: Food function and medicinal effect of mushroom fungi. Food. Rev. Intern. 11: 5-21. https://doi.org/10.1080/87559129509541017

MIZUNO, T., Kinoshita, T., Zhuang, C., Ito, H. & Mayuzumi, Y. (1995). Antitumor-active heteroglycans from Hon shimeji mushroom, Tricholoma giganteum. Biosci. Biotechnol. Biochem. 59(4): 568-571. https://doi.org/10.1271/bbb.59.568

MIZUNO, T., Minato, K., Ito, H., Kawade, M., Terai, H. & Tsuchida, H. (1999). Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei mill. Biochem. Mol. Biol. Int. 47(4): 707-714. https://doi.org/10.1080/15216549900201773

NG, M. L. & Yap, A. T. (2002). Inhibition of human colon carcinoma development by lantinan from shiitake mushroom (Lentinus edodes). J. Altern. 8(5): 581-589. https://doi.org/10.1089/107555302320825093

NGAI, P., and Ng, T. (2003). Lentin, a novel and potent antifugal protein from shiitake mushroom with inhibitory effect on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci. 73, 3363-3374.

OKULL, D. O., Beelman, R.B., and Gourama, H. (2003). Antifugal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3-ol against Penicillium expansum in potato dextrose agar medium. J Food Prot. 66, 1503-1505.

PERCH, M. (1990). In vitro interactions between Armillaria luteobubalina and other wood decay fungi. Mycol. Res. 94, 753-761.

SMANIA, A., Monache, F.D. Loguericio-Leite, C. Smania, E., F.A. and Gerber, A. L. (2001). Antimicrobial activity of basidiomycetes. Int. J. Med. Mushr. 3, 87.

SMANIA, E., F.A. Monache, F.D. Smania Jr, A., Yunes, R.A., and Cuneo, R.S. (2003). Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia 74, 375-377.

SUAY, I., Arenal, F., Asinsio, F.J., Basilio, A., Cabello, M. A., Diez, M. T., García, J.B., González del Val, A., Gorrochtegui, J., Hernández, P., Peláez, F., and Vicente M. F. (2000). Screening of basidiomycetes for antimicrobial activities. Antonie van LEEUWENHOEK 78, 129-139.

THORN, R., and Barron, G. (1984). Carnivorous mushrooms. Science 224, 76-78.

VANE, J. R. (2000). Aspirin and other anti-inflamatory drugs, Thorax 55, S3-S9.

VANE, J. R. and Botting, R. M. (1998). Anti-inflamatory drugs and their mechanism of action. Imflamm. Res. 47, S78-S87.

VOET, D., and Voet, G. (1995). “Biochemistry.” Second Eddition ed. John Wiley & Sons, Inc., New York. ISBN: 978-0-470-57095-1

WANG, H., Ng, T. B., and Lui, Q. (2003). A novel lectin from the wild mushroom Polyporus adusta. Biochem. Biophysic. Res. Commun. 307, 535-339.

WASSER, S. P. (2002). Medicinal mushroom as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 3, 258-274.

WASSER, S. P., and Weis, A. L. (1999). Therapeutic effects of medicinal properties of substance occurring in higher basidiomycetes mushrooms; a current perspective. Crit. Rev. Immunol. 19, 65-96.

WEBER, W., Anke, T., Steffan, B., and Steglich, W. (1990). Antibiotics from basidiomycetes. XXXII. Strobilurin E: a new cytostatic and antifugal (E)-beta-methoxyacrylate antibiotic from Crepidotus fulvotomentosus. J. Antibiot. 43, 207-212.

WU, A. M., Wu J. H. Herp, A., and Liu, J. H. (2003). Effect of polyvalencies of glycotopes on the binding of a lectin from edible mushroom, Agaricus bisporus. Biochem. J. 371, 311-320.

YANG, Q. Y., and Jong, S. C. (1989). Medicinal mushrooms in China. Mushr. Sci. 9, 631-643.

ZHANG, J., Wang, G., Li, H., Zhuang, C., Mizuno, T. Ito, H., Susuki, C., and Okamoto, H. (1994). Antitumor polysaccharides from a Chinase mushroom, “yuhuangmo,” the fruiting body of Pleurotus citrinopileatus. Biosci. Biotechnol. Biochem. 7, 1195-1201.

ZHANG, P., and Cheung, P. C. K. (2002). Evaluation of sulfated Lentinus edodes alpha-(1 ̶ ˃3)-D-glucan as a potential antitumor agent. Biosci. Biotechnol. Biochem. 66, 1052-1056.

ZHAO, C., Sun, H., Tong, X., and Qi, Y. (2003). An antitumor lectin from the edible mushroom Agrocybe aegerita. Biochem. J. 374, 321-327

Publicado
2008-04-22
Cómo citar
Robles Hernández, L., González Franco, A. C., Soto Parra, J. M., & Montes Domínguez, F. (2008). Review of agricultural and medicinal applications of basidiomycete mushrooms: Revisión sobre las aplicaciones de las setas en agricultura y medicina. TECNOCIENCIA Chihuahua, 2(2), 95-107. https://doi.org/10.54167/tch.v2i2.1387
Sección
Medio Ambiente y Desarrollo Sustentable

Artículos más leídos del mismo autor/a