Desempeño agronómico y fisiológico de variedades nativas de tomate mexicano sometidas a deficiencias de agua y nutrientes

Performance of native varieties of Mexican tomatoes submitted to water and nutrient deficiencies

Palabras clave: Solanum lycopersicum L., variedades nativas, área foliar, rendimiento, biomasa, eficiencia en uso del agua

Resumen

El agua y los nutrimentos minerales son factores esenciales para el crecimiento vegetal y la producción agrícola. El objetivo de este trabajo fue comparar la respuesta a reducción combinada de agua y de nutrientes (25%) de cuatro poblaciones nativas de tomate y de un híbrido comercial, en comparación con un régimen de riego y nutrición suficiente (100%). Las principales variables evaluadas durante el ciclo de cultivo fueron: área foliar, biomasa, rendimiento, tamaño y número de frutos por planta, número de lóculos por fruto, firmeza, sólidos solubles totales, tasa fotosintética y eficiencia en el uso del agua (EUA). Se encontró que el híbrido comercial superó a los tomates nativos en área foliar, biomasa total, y en rendimiento de fruto, con y sin déficit hídrico. Entre los tomates nativos (que no han sido sometido al mejoramiento genético formal) sobresalió OAX por su alto potencial de rendimiento de fruto (estadísticamente similar al del híbrido) y por su alta EUA, tanto en ambiente favorable como en estrés hídrico-nutrimental. La var. EMX destacó por su tolerancia al estrés expresada en rendimiento de fruto y en tasa de fotosíntesis. La var. PUE mostró tolerancia al estrés en área foliar y en biomasa total, así como buen rendimiento. Por su parte la var. CAM tuvo el más alto contenido de sólidos solubles totales, tanto con y sin estrés. Estos resultados evidencian el potencial de los tomates nativos en productividad y calidad de fruto, que puede ser aprovechada directamente para producción comercial y como donadores de genes para formar nuevas variedades mejoradas.

https://doi.org/10.54167/tecnociencia.v16i1.882

Citas

AOAC 2012. Official Methods of Analysis. 19th Edition. Association of Official Analytical Chemists. Gaithersburg, Maryland, USA. 220p.

Agele, S.O., G.O. Iremiren & S.O. Ojeniyi, 2011. Evapotranspiration, water use efficiency and yield of rainfed and irrigated tomato. International Journal of Agriculture & Biology 13: 469–476. https://bit.ly/3uQmsQr

Al Hassan M., M. Martínez F., F.J. Ramos S., O. Vicente, & M. Boscaiu. 2015. Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 43(1): 1-11. https://doi.org/10.15835/nbha4319793

Anuradha B., P. Saidaiah, H. Sudini, A. Geetha & K. R. Reddy 2018. Correlation and path coefficient analysis in tomato (Solanum lycopersicum L.). Journal of Pharmacognosy and Phytochemistry 7(5): 2748-2751. ISSN 2278-4136 https://bit.ly/3DuvfLY

Aspiazú I., T. Sediyama, T., J.I. Rribeiro jr., A.A. Silva, G. Concenco, E.E. Ferreira, L. Galon, A.F. Silva, E.T. Borges, & W.F. Araujo. 2010. Water use efficiency of cassava plants under competition conditions. Planta Daninha 28(4):699-703. https://doi.org/10.1590/S0100-83582010000400001

Barlow E.W.R., R.E. Munns, & C.J. Brady. 1980. Drought responses of apical meristems. In: Adaptation of Plants to Water and High Temperature Stress. N.C. Turner and P.J. Kramer (eds.). John Wiley & Sons, New York. Pp: 191-206.

Barraza A., F.V. 2012. Acumulacion de materia seca del cultivo de pepino (Cucumis sativus L.) en invernadero. Revista Temas Agrarios 17(2):1-18. https://doi.org/10.21897/rta.v17i2.699

Bista D. R., S. A. Heckathorn, D. M. Jayawardena, S. Mishra, & J. K. Boldt. 2018. Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and -tolerant grasses. Plants (Basel) 7(2):28. https://doi.org/10.3390/plants7020028

Caspar C., K. Peng, M. Movahedi, J.A. Dunn, H.J. Walker, Y-K. Liang, D.H. McLachlan, S. Casson, J.C. Isner, I. Wilson, S.J. Neill, R. Hedrich, J.E. Gray, & A.M. Hetherington. 2015. Elevated CO2-induced responses in stomata require ABA and ABA signaling. Current Biology 25 (20): 2709-2716. https://doi.org/10.1016/j.cub.2015.09.013

Cui J., G. Shao J. Lu, L. Keabetswe & G. Hoogenboom. 2020. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Scientia Agricola 77 (2). https://doi.org/10.1590/1678-992X-2018-0390

Deka D., A. K. Singh, & A. Singh, 2018. Effect of drought stress on crop plants with special reference to drought avoidance and tolerance mechanisms: A review. International Journal of Current Microbiology and Applied Sciences. 7(9): 2703-2721. https://doi.org/10.20546/ijcmas

Fang, Y. J. & L.Z. Xiong. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72, 673-689. http://doi.org/10.1007/s00018-014-1767-0

Farooq M., A. Wahid, N. Kobayashi D. Fujita & S. M. A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 29 (1):185-212. https://doi.org/10.1051/agro:2008021

Fernández R. E. y F. Camacho. 2005. Eficiencia en el uso del agua. Revista Viveros 86-89. https://www.redalyc.org/articulo.oa?id=353531987011

Flores J., W. Ojeda-Bustamante, I. López, A. Rojano e I. Salazar. 2007. Requerimientos de riego para tomate de invernadero. Terra Latinoamericana 25(2):127-134. http://www.redalyc.org/articulo.oa?id=57325204

Florido B. M. y F. L. Bao. 2014. Tolerancia a estrés por déficit hídrico en tomate (Solanum lycopersicum L.). Cultivos Tropicales 35(3):70-88. https://bit.ly/3DCoasI

Grzesiak S., M.T. Grzesiak, T. Hura, I. Marcinska & A. Rzepka. 2013. Changes in root system structure, leaf water potential and gas exchange of maize and triticale seedlings affected by soil compaction. Environmental and Experimental Botany 88:2-10. DOI: https://doi.org/10.1016/j.envexpbot.2012.01.010

Hatfield J.L. & C. Dold. 2019. Water-use efficiency: Advances and challenges in a changing climate. Frontiers in Plant Science 10:103. DOI: https://doi.org/10.3389/fpls.2019.00103

Kapoor D., S. Bhardwaj, M. Landi, A. Sharma, M. Ramakrishnan & A. Sharma. 2020. The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences 10:1-19. doi: https://doi.org/10.3390/app10165692

Klunklin W. & G. Savage. 2017. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods 6(8):56. DOI: https://doi.org/10.3390/foods6080056

Lesk C., P. Rowhani & N. Ramankutty. 2016. Influence of extreme weather disasters on global crop production. Nature 529:84-87. DOI: https://doi.org/10.1038/nature16467

Liang G., J. Liu, J. Zhang, & J. Guo. 2019. Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science 145(1):12-17 DOI: https://doi.org/10.21273/JASHS04725-19

Liu J, T. Hu, P. Feng, L. Wang, & S. Yang. 2019. Tomato yield and water use efficiency change with various soil moisture and potassium levels during different growth stages. PLoS ONE 14(3): e0213643. DOI: https://doi.org/10.1371/journal.pone.0213643

Lynch J., P. Marschner, & Z. Rengel. 2012. Effect of internal and external factors on root growth and development. In: Marschner P. (ed.). Marschner´s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press, London. 643 p. https://doi.org/10.1016/B978-0-12-384905-2.00013-3

Maldonado-Peralta R., P. Ramírez-Vallejo†, V.A. González Hernández, F. Castillo-González, M. Sandoval-Villa, M. Livera-Muñoz y N. Cruz-Huerta. 2016. Riqueza agronómica en colectas mexicanas de tomates nativos. Agroproductividad 12:68-75. https://bit.ly/3J3Iswp

Monge-Pérez J. E. 2014. Caracterización de 14 genotipos de tomate (Lycopersicon esculentum Mill.) cultivados bajo invernadero en Costa Rica. Tecnología en Marcha 27(4):59-68. https://doi.org/10.18845/tm.v27i4.2086

Morad H. A., M. A. Ebrahimizadeh & S. Beecham. 2009. The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region. Agricultural Water Management 96: 93-99. http://doi.org/10.1016/j.agwat.2008.07.004

Nusrat A., A. Schwarzenberg, J-C. Yvin, A. H. Seyed. 2018. Regulatory role of silicon in mediating differential stress tolerance responses in two contrasting tomato genotypes under osmotic stress. Frontiers in Plant Science 9:1475. https://doi.org/10.3389/fpls.2018.01475

Ripoll J., L. Urban, B. Brunel, & N. Bertin. 2016. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. Journal of Plant Physiology 190:26-35. https://doi.org/10.1016/j.jplph.2015.10.006

Rouphael Y., M. Cardarelli, D. Schwarz, P. Franken & G. Colla. 2012. Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Plant Responses to Drought Stress. Pp:171-198. http://doi.org/10.1007/978-3-642-32653-0_7

Salazar-Moreno R., A. Rojano-Aguilar, e I.L. López-Cruz. 2014. La eficiencia en el uso del agua en la agricultura controlada. Tecnología y Ciencia del Agua 5(2):177-183. https://bit.ly/3DEOjaj

Sánchez-Rodríguez E., L. Romero, J.M. Ruiz. 2016. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. Journal of Plant Physiology 90:72-78. https://doi.org/10.1016/j.jplph.2015.10.010

Shamim F., H. Athar, & A. Waheed. 2013. Role of osmolytes in degree of water stress tolerance in tomato. Pakistan Journal of Phytopathology 25(1):37-42. https://bit.ly/3DCbZfu

Sibomana I. C., J. N. Aguyoh & A. M. Opiyo. 2013. Water stress affects growth and yield of container grown tomato (Lycopersicon esculentum Mill.) plants. Global Journal of Bio-Science and Biotechnology 2(4):461-466. https://bit.ly/3DEQ3QT

Stanghellini, C. 2005. Irrigation water: use, efficiency and economics. In: Improvement in Water Use Efficiency in Protected Crops. Junta de Andalucía, Sevilla, España. pp. 23-33.

Steiner A., A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil 15: 134-154. https://doi.org/10.1007/BF01347224

Takács S., Z. Pék, D. Csányi, H.G. Daood, P. Szuvandzsiev, G. Palotás, & L. Helyes. 2020. Influence of water stress levels on the yield and lycopene content of tomato. Water 12:2165. https://doi.org/10.3390/w12082165

Tembe K., G.N. Chemining’wa, J. Ambuko, & W. Owino W. 2017. Effect of water stress on yield and physiological traits among selected African tomato (Solanum lycopersicum) land races. International Network for Natural Sciences – Research Journal 10(1):78-85. https://bit.ly/3LINC2S

Vásquez-Ortiz, R., J. C. Carrillo-Rodríguez y P. Ramírez-Vallejo. 2010. Evaluación morfo-agronómica de una muestra del jitomate nativo del centro y sureste de México. Naturaleza y Desarrollo 8(2): 49-64. https://bit.ly/3LJrjtR

Ximénez-Embún M.G., F. Ortego, & P. Castañera. 2016. Drought-stressed tomato plants trigger bottom–up effects on the invasive Tetranychus evansi. PLoS ONE 11(1): e0145275. https://doi.org/10.1371/journal.pone.0145275

Yang H, M.K. Shukla, X. Mao, S. Kang & T. Du. 2019. Interactive regimes of reduced irrigation and salt stress depressed tomato water use efficiency at leaf and plant scales by affecting leaf physiology and stem sap flow. Frontiers in Plant Science 10: 1-17. https://doi.org/10.3389/fpls.2019.00160

Yuan, X.K., Z.Q. Yang, Y.X. Li, Q. Liu, & W. Han. 2016. Effects of different levels of water stress on leaf photosynthetic characteristics and antioxidant enzyme activities of greenhouse tomato. Photosynthetica 54: 28–39. https://doi.org/10.1007/s11099-015-0122-5

Zanne A. E., D. C. Tank, W. K. Cornwell, J. M. Eastman, S. A. Smith, R. G. FitzJohn, D. J. McGlinn, B. C. O'Meara, A. T. Moles, P. B. Reich, D. L. Royer, D. E. Soltis, P. F. Stevens, M. Westoby, I. J. Wright, L. Aarssen, R. I. Bertin, A. Calaminus, R. Govaerts, F. Hemmings, M. R. Leishman, J. Oleksyn, P. S. Soltis, N. G. Swenson, L. Warman & J. M. Beaulieu. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506: 89-92. https://doi.org/10.1038/nature12872

Zhang C. & Z. Huang. 2013. Effects of endogenous abscisic acid, jasmonic acid, polyamines, and polyamine oxidase activity in tomato seedlings under drought stress. Scientia Horticulturae159:172-177. https://doi.org/10.1016/j.scienta.2013.05.013

Zhao X., L. Kang, Q. Wang, C. Lin, W. Liu, W Chen, T. Sang & J. Yan. 2021. Water use efficiency and stress tolerance of the potential energy crop Miscanthus lutarioriparius grown on the Loess Plateau of China. Plants 13,10(3):544. https://doi.org/10.3390/plants10030544

Zlatev Z. & F. L. Cebola. 2012. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture 24: 57-72. https://doi.org/10.9755/ejfa.v24i1.10599

Publicado
2022-04-06
Cómo citar
Maldonado-Peralta, R., Cruz-Huerta, N., Ramírez-Ramírez, I., Castillo-González, F., Livera-Muñoz, M., Sandoval-Villa, M., & González-Hernández, V. A. (2022). Desempeño agronómico y fisiológico de variedades nativas de tomate mexicano sometidas a deficiencias de agua y nutrientes: Performance of native varieties of Mexican tomatoes submitted to water and nutrient deficiencies. TECNOCIENCIA Chihuahua, 16(1), e 882. https://doi.org/10.54167/tecnociencia.v16i1.882