Antibacterial activity of mexican oregano essential oil (Lippia berlandieri) against the phytopathogenic bacterium Xanthomonas euvesicatoria

Actividad antibacteriana del aceite esencial de orégano (Lippia berlandieri) contra la bacteria fitopatógena Xanthomonas euvesicatoria

  • Alba Chávez-Dozal New México State University
  • Hugo A. Morales-Morales Universidad Autónoma de Chihuahua
  • Soum Sanago New México State University
  • Armando Segovia-Lerma Universidad Autónoma de Chihuahua
  • Geoffrey Smith New México State University
Palabras clave: bacterial spot, minimim inhibory concentration, Carvacrol


Xanthomonas euvesicatoria causes bacterial spot disease in leaves, roots, fruits and stems of pepper plants. Identification of this phytopathogen in jalapeno seeds from Delicias, Chihuahua, Mexico and diseased plants from New Mexico, USA, was carried out by isolation on semiselective media, pathogenicity assays and biochemical tests. Mexican oregano (Lippia berlandieri) essential oil was tested in vitro against Xanthomonas euvesicatoria. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were performed and the oil showed an inhibition of bacterial growth in concentrations of 0.01 mg/ml and a bactericidal effect in concentrations of 0.05 mg/ml. Oregano essential oil is reported to have antimicrobial activities due to the effect of high content of carvacrol. Oregano oil had an MIC that was 10 times lower compared to pure carvacrol, since carvacrol content, measured by gas chromatography/mass spectrometry (GC/ MS) was only 30%. The antimicrobial effect in vivo was tested using a randomized complete block design model in a greenhouse. Disease severity, xanthomonad incidence as well as chlorophyll indices were calculated showing a strong inhibition of the disease, when seeds or foliage were treated with oregano oil. These results demonstrate the current commonality of xanthomonad pathogens on both sides of the Mexican-American border, and that oregano oil has potent antibacterial activity.


Xanthomonas euvesicatoria es la bacteria agente causal de la marchitez bacteriana en hojas, raíces y frutos de chile jalapeño. Se realizó la identificación de este patógeno en las semillas de chile jalapeño provenientes de Delicias, Chihuahua, México y plantas enfermas provenientes del estado de Nuevo Mexico, EUA; a través de cultivo en medios semi-selectivos, ensayos de patogenicidad y pruebas bioquímicas. El aceite esencial del orégano mexicano (Lippia berlandieri) fue probado in vitro contra Xanthomonas euvesicatoria. Pruebas de concentración mínima inhibitoria (CMI) y concentración mínima bactericida (CMB) fueron determinadas y el aceite mostró una inhibición de crecimiento a concentraciones de 0.01 mg/ml y un efecto bactericida a concentraciones de 0.05 mg/ ml. El aceite esencial de orégano muestra actividades antibacterianas gracias al efecto de la alta concentración de carvacrol. El aceite de orégano mostró una CMI que fue 10 veces menor en comparación con el efecto de carvacrol puro, ya que la concentración determinada en el aceite por medio de cromatografía de gases/espectrometría de masas (GC/MS) fue de 30% de carvacrol. El efecto antibacteriano in vivo fue probado utilizando un diseño de bloques completos al azar en un invernadero. La severidad e incidencia de la enfermedad, así como los índices de clorofila, fueron calculados mostrando una inhibición de la enfermedad cuando las semillas u hojas de las plantas de chile se trataron con el aceite de orégano. Estos resultados demuestran la problemática de la bacteria Xanthomonas en las fronteras México-Americanas y que el aceite esencial de orégano ejerce una acción antibacteriana.

Palabras clave: marchitez bacteriana, concentración mínima inhibitoria, Carvacrol.


Abbasi, P.A., N. Soltani, D.A. Cuppels & G. Lazarovits. 2002. Reduction of bacterial spot disease severity on tomato and pepper plants with foliar applications of ammonium lignosulfonate and potassium phosphate. Plant Disease 86(11):1232-1236.

Adams, R.P. 2001. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing Corporation. ISBN 0931710855.

Álvarez, A.M., A.A. Benedict & C.Y. Mizumoto. 1985. Identification of xanthomonads and grouping of strains of Xanthomonas campestris pv. campestris with monoclonal antibodies. Phytopathology 75(6): 722-728.

Andrade, E., L.P. Silva, J.L. Pereira, E.F. Noronha, F.B. Reis, C. Bloch, M.F. Dos Santos, G.B. Domont, O.L. Franco & A. Mehta. 2008. In vivo proteome analysis of Xanthomonas campestris in the interaction with the host plant Brassica oleracea. FEMS Microbiology Letters 28(2):167-174.

Arcila-Lozano, C., G. Loarca-Pina, S. Lecona-Uribe & E. González. 2004. El orégano: propiedades, composición y actividad biológica de sus componentes. ALAN Archivos Latinoamericanos de Nutrición 54(1):100-111.

Aureli, P., A. Costantini & S. Zolea. 1992. Antimicrobial activity of some essential oils against Lysteria monocytogenes. Food Protection 55(5):334-348.

Baricevic, D., L. Milevoj & J. Borstnik. 2001. Insecticidal effect of oregano (Origanum vulgare) on the dry bean weevil Acanthoscelides obtectus. Horticultural Science 7(2):84-88.

Biondi, D., P. Cianci, C. Geraci, G. Ruberto & M. Piattelli. 1993. Antimicrobial activity and chemical composition of essential oils from Sicilian aromatic plants. Flavour and fragrance 8(6):331-337.

Bogdanove, A.J., R. Koebnik, H. Lu, A. Furutani, S.V. Angiuoli, P.B. Patil, M.A. Van Sluys, R.P. Ryan, D.F. Meyer, S.W. Han, G. Aparna, M. Rajaram, A.L. Delcher, A.M. Phillippy, D. Puiu, M.C. Schatz, M. Shumway, D.D. Sommer, C. Trapnell, F. Benahmed, G. Dimitrov, R. Madupu, D. Radune, S. Sullivan, G. Jha, H. Ishihara, S.W. Lee, A. Pandey, V. Sharma, M. Sriariyanun, B. Szurek, C.M. Vera-Cruz, K.S. Dorman, P.C. Ronald, V. Verdier, J.M. Dow, R.V. Sonti, S. Tsuge, V.P. Brendel, P.D. Rabinowicz, J.E. Leach, F.F. White S. L. Salzberg. 2011. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. Journal of Bacteriology 193(19): 5450-5464

Bouzar, H., J.B. Jones, R.E. Stall, N.C. Hodge, G.V. Minsavage, A.A. Benedict & A.M. Alvarez. 1994. Physiological, chemical, serological and pathogenic analyses of a worldwide collection of Xantomonas campestris pv. vesicatoria strains. Phytopathology 84(22): 663-671.

Chorianoupolos, N., E. Kalpoutzakis, N. Aligiannis, S. Mitaku, G.J. Nychas & A.S. Haroutounian. 2004. Essential oils of Satureja, Origanum, and Thymus species: chemical composition and antibacterial activities against foodborne pathogens. Agricultural and Food Chemistry 52(26): 8261-8267.

Chorianoupolos, N., E. Evergetis, A. Mallouchos, E. Kalpoutzakis, G.J. Nichas & A.S. Haroutonian. 2006. Characterization of the essential oil volatiles of Saruteja thymbra and Saruteja parnassica: influence on harvesting time and antimicrobial activity. Agricultural and Food Chemistry 54(8):3139-3145.

Chuang, T.Y. & M. Jeger. 1987. Relationship between incidence and severity of banana leaf spot in Taiwan. Phytopathology 77: 1537-1541.

Dorman, H.J. & S.G. Deans. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Applied Microbiology 88(2): 308-316.

Duschastki, C., P. Bailac, A. Carrascull, N. Firpo & M. Ponzi. 1999. Composicion de los aceites esenciales de Lippia jeneillana, L. integrifolia, L. Turbinata de la provincia de San Luis en Argentina. Rev Colombiana de Química 27:9-16.

Elgayyar, M. & F.A. Draughon. 2001. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Food Protection 64(7):1019-24.

Fedatto, L.E. 2006. Detection and characterization of protease secreted by the plant pathogen Xylella fastidiosa. Microbiological Research 161(3):263-272.

Force, M., W.S. Sparks & R.A. Ronzio. 2000. Inhibition of enteric parasites by emulsified oil of oregano in vivo. Phytotherapy Research 14(3): 213-4.;2-u

Franken, A.A.J. M., J.F. Zilverentant, P.M. Boonekamp & A. Schots. 1991. Specificity of polyclonal and monoclonat antibodies for the identification of Xanthomonas campestris pv campestris. Netherlands Journal of Plant Pathology 98(2): 81-94.

Ji-Liang, Z. & C.S. Orser. 2004. Conserved repetition in the ice nucleation gene inaX from Xanthomonas campestris pv. translucens. Molecular and General Genetics 223(1):163-166.

Kuflu, M. K. & D.A. Cuppels. 1997. Development of a Diagnostic DNA Probe for Xanthomonads Causing Bacterial Spot of Peppers and Tomatoes. Applied and Environmental Microbiology 63(11): 4462-4470.

O’mahony, R., H. Al-Khtheeri, D. Weerasekera, N. Fernando, D. Vaira, J. Holton & C. Basset. 2005. Bactericidal and anti- adhesive properties of culinary and medicinal plants against Helicobacter pylori. World Journal of Gastroenterol. 11(47): 7499-7507.

Pohronesny, K., M.A. Moss, W. Dankers & J. Schenk. 1990. Dispersal and management of Xanthomonas campestris pv vesicatoria during thinning of direct-seed tomato. Plant Disease 74:800-805.

Portillo-Ruiz, M., S. Viramontes, L. Munoz, M. Gastelum & G.V. Nevarez. 2005. Antifungal activity of mexican oregano Lippia berlandieri shauer. Food Protection 68(12):2713-2717.

Sanogo, S. & M. Clary. 2008. Bacterial leaf spot of Chile peppers: A short guide for growers. New Mexico Chile Association Report.

Stover, R.H. & J.D. Dickson. 1969. Leaf spot on bananas caused by Mycosparella musicola: Methods of measuring spotting prevalence and severity. Phytopathology 60:856-860.

Trebaol, G., L. Gardan, C. Manceau, J. Tanguy, Y. Tirilly & S. Boury. 2000. Genomic and phenotypic characterization of Xanthomonas cynarae sp. nov., a new species that causes bacterial bract spot of artichoke (Cynara scolymus L.). International Journal of Systematic and Evolutionary Microbiology 50:1471-1478.

Valero, M. & M.C. Salmeron. 2003. Antibacterial activity of 11 essential oils against Bacillus cereus in tyndallized carrot broth. International Journal Food Microbiology 85(1-2):73-81.

Velasquez-Valle, R. & M.D. Amador-Ramirez. 2007. Análisis sobre la investigación fitopatológica de chile seco (Capsicum annuum L.), realizada por el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias de los estados de Aguascalientes y Zacatecas, México. Revista Mexicana de Fitopatología. 25(1): 80-84.

Veldhuzen, E.J.A., B. Tjeerdsma-Van Bokhoven, C. Zweijtzer, S.A. Burt & H.P. Haagsman. 2006. Structural requirements for the antimicrobial activity of carvacrol. Agricultural and Food Chemistry 54(5):1874-1879.

Vernin, G., C. Lageot, E.M. Gaydouz & C. Parkanyi. 2001. Analysis of the essential oil of Lippia graveolens from El Salvador. Flavor and Fragrance 16(3): 219-226.

Vorholter, F.J., S. Schneiker, A. Goesmann, L. Krause, T. Bekel, O. Kraiser, B. Linke, T. Patshkowski, C. Ruckert, J. Schmid, K. Sidhuv, V. Sieber,A. Tauch, S.A. Watt, B. Weisshaar, A. Becker, K. Niehaus & A. Puhler. 2008. The genome of Xanthomonas campestris pv. campestris and its use for the reconstruction of methabolic pathways involved in xanthan biosynthesis. Biotechnology 134(1-2):33-45.

Cómo citar
Chávez-Dozal, A., Morales-Morales, H. A., Sanago, S., Segovia-Lerma, A., & Smith, G. (2020). Antibacterial activity of mexican oregano essential oil (Lippia berlandieri) against the phytopathogenic bacterium Xanthomonas euvesicatoria: Actividad antibacteriana del aceite esencial de orégano (Lippia berlandieri) contra la bacteria fitopatógena Xanthomonas euvesicatoria. TECNOCIENCIA Chihuahua, 8(2).
Medio Ambiente y Desarrollo Sustentable