Biofortificación con micronutrientes en cultivos agrícolas y su impacto en la nutrición y salud humana

Micronutrient biofortification in agricultural crops and their impact on human nutrition and health

  • Juan Pedro Sida-Arreola Centro de Investigación en Alimentos y Desarrollo, A.C.
  • Esteban Sánchez Centro de Investigación en Alimentos y Desarrollo, A.C.
  • Graciela Dolores Ávila-Quezada Universidad Autónoma de Chihuahua
  • Carlos Horacio Acosta-Muñoz Centro de Investigación en Alimentos y Desarrollo, A.C.
  • Paul Baruk Zamudio-Flores Centro de Investigación en Alimentos y Desarrollo, A.C.
Palabras clave: Biofortificación, deficiencia de micronutrientes, nutrición, salud humana

Resumen

Los seres humanos requieren de más de 22 elementos minerales para su desarrollo óptimo, los cuales pueden ser suplementados con una dieta balanceada. Las deficiencias de micronutrientes se han incrementado en las últimas décadas debido a la depreciación general de la calidad de la dieta de las poblaciones vulnerables, tanto en los países desarrollados y en desarrollo. Se estima que, de la población que padece malnutrición de micronutrientes, entre un 60 a 80% presenta deficiencia de hierro (Fe), más de 30% tiene deficiencia en zinc (Zn), 30% es deficiente en yodo (I) y alrededor del 15% es deficiente en selenio (Se). Las deficiencias de hierro (Fe) y zinc (Zn) son un problema crítico de salud pública en todo el mundo, con el impacto negativo en la salud, la esperanza de vida y la productividad. El proceso de biofortificación es un enfoque agrícola que puede mejorar la nutrición humana a nivel mundial. La biofortificación agronómica se considera a corto plazo y como una estrategia complementaria. Los análisis económicos sugieren que la biofortificación genética es la estrategia más eficaz para aumentar la dieta la ingesta de Fe y Zn de las poblaciones vulnerables. El enriquecimiento de micronutrientes esenciales de los granos de cereales mediante el mejoramiento genético es un área de alta prioridad de la investigación, y una estrategia eficaz entre otros enfoques, por ejemplo, el enriquecimiento, la suplementación y la diversificación de los alimentos. El presente manuscrito pretende dar a conocer la problemática de la deficiencia de micronutrientes a nivel mundial y cómo afecta a la nutrición y salud humana. Así mismo, se plantean algunas soluciones a este problema, como es el caso de la estrategia de biofortificación de micronutrientes en cultivos agrícolas.

Abstract

Humans require more than 22 mineral elements for optimum growth, which can be supplemented with a balanced diet. Micronutrient deficiencies have increased over recent decades due to the general depreciation of the quality of the diet of vulnerable populations, both in developed and developing countries. It is estimated that the population suffering from micronutrient malnutrition, between 60-80% of the population are deficient in iron (Fe), over 30% are deficient in zinc (Zn), 30% are deficient in iodine (I) and about 15% are deficient in selenium. Deficiencies of iron (Fe) and zinc (Zn) are a critical public health problem worldwide, with negative impact on health, lifespan and productivity. Biofortification process is an agricultural approach that can improve human nutrition worldwide. Agronomic biofortification is considered a short-term and as a complementary strategy, but economic analyses suggest that genetic biofortification is the most effective strategy for increasing dietary intake of Fe and Zn of vulnerable populations. Enrichment of cereal grains by breeding is a high-priority area of research, and an effective strategy among other approaches, such as fortification, supplementation and food diversification. This manuscript seeks to highlight the problem of micronutrient deficiency in the world and how it affects the human health and nutrition. Also, some solutions to this problem arise, as in the case of the strategy of micronutrient biofortification in agricultural crops.

Keywords: biofortification, micronutrient deficiencies, nutrition, human health.

Citas

Abadía, J., S. Vázquez, R. Rellán-Álvarez, H. El-Jendoubi, A. Abadía, A. Álvarez-Fernández & A.F. López-Millán. 2011. Towards a knowledge-based correction of iron chlorosis. Plant Physiology and Biochemistry 49(5):471-482. https://doi.org/10.1016/j.plaphy.2011.01.026

Álvarez-Fernández, A., I. Orera, J. Abadía & A. Abadía. 2007. Determination of synthetic ferric chelates used as fertilizers by liquid chromatography-electrospray/mass spectrometry in agricultural matrices. Journal of the American Society for Mass Spectrometry 18(1):37-47. https://doi.org/10.1016/j.jasms.2006.08.018

Alvarez, J.M., J. Novillo, A. Obrador & L. López-Valdivia. 2001. Mobility and leachability of zinc in two soils treated with six organic zinc complexes. Journal of Agricultural and Food Chemistry 49(8):3833-3840. https://doi.org/10.1021/jf010037i

Aisen, P., C. Enns & M. Wessling-Resnick. 2001. Chemistry and biology of eukaryotic iron metabolism. The International Journal of Biochemistry & Cell Biology 33(10): 940-959. https://doi.org/10.1016/s1357-2725(01)00063-2

Bänziger, M. & J. Long. 2000. The potential for increasing the iron and zinc density of maize through plant-breeding. Food & Nutrition Bulletin 21(4):397-400. https://doi.org/10.1177/156482650002100410

Beebe, S., A.V. Gonzalez & J. Rengifo. 2000. Research on trace minerals in the common bean. Food & Nutrition Bulletin 21(4):387-391. https://doi.org/10.1177/156482650002100408

Blair, M.W., C. Astudillo, M.A. Grusak, R. Graham & S.E. Beebe. 2009. Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Molecular Breeding 23(2):197-207. http://dx.doi.org/10.1007/s11032-008-9225-z

Blair, M.W., P. Izquierdo, C. Astudillo & M.A. Grusak. 2013. A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2013.00275

Blair, M.W., F. Monserrate, S.E. Beebe, J. Restrepo & J.O. Flores. 2010. Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red-mottled seed class. Journal of Plant Registrations 4(1): 55-59. https://doi.org/10.3198/jpr2008.09.0562crg

Bonneuil, C. 2006. Mendelism, Plant Breeding and Experimental Cultures: Agriculture and the Development of Genetics in France. Journal of the History of Biology 39(2): 281-308. https://doi.org/10.1007/s10739-006-0005-5

Bouis, H.E. 2003. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost?. Proceedings of the Nutrition Society 62(2): 403-411. https://doi.org/10.1079/PNS2003262

Bouis, H.E. 2007. The potential of genetically modified food crops to improve human nutrition in developing countries. The Journal of Development Studies 43(1):79-96. https://doi.org/10.1080/00220380601055585

Bouis, H.E. & R.M. Welch. 2010. Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50(S1):S-20-S-32. https://doi.org/10.2135/cropsci2009.09.0531

Broughton, W.J., G. Hernandez, M. Blair, S. Beebe, P. Gepts & J. Vanderleyden. 2003. Beans (Phaseolus spp.)–model food legumes. Plant and Soil 252:55-128. https://doi.org/10.1023/A:1024146710611

Brown, K.H., J.M. Peerson, J. Rivera & L.H. Allen. 2002. Effect of supplemental zinc on the growth and serum zinc concentrations of prepubertal children: a meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition 75(6):1062-1071. https://doi.org/10.1093/ajcn/75.6.1062

Brownlie, T., V. Utermohlen, P.S. Hinton & J.D. Haas. 2004. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. The American Journal of Clinical Nutrition 79(3):437-443. https://doi.org/10.1093/ajcn/79.3.437

Bruner, A.B., A. Joffe, A.K. Duggan, J.F. Casella & J. Brandt. 1996. Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. The Lancet 348(9033): 992-996. https://doi.org/10.1016/s0140-6736(96)02341-0

Carpenter, C.E. & A.W. Mahoney. 1992. Contributions of heme and nonheme iron to human nutrition. Critical Reviews in Food Science & Nutrition 31(4):333-367. https://doi.org/10.1080/10408399209527576

Cercamondi, C.I., I.M. Egli, E. Mitchikpe, F. Tossou, C. Zeder, J.D. Hounhouigan & R.F. Hurrell. 2013. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. The Journal of Nutrition 143(9):1376-1382. https://doi.org/10.3945/jn.113.176826

De Onis, M. 2000. Measuring nutritional status in relation to mortality. Bulletin of the World Health Organization 78(10): 1271-1274. https://apps.who.int/iris/handle/10665/267997

Dodd, A.N., J. Kudla & D. Sanders. 2010. The language of calcium signaling. Annual Review of Plant Biology 61:593-620. https://doi.org/10.1146/annurev-arplant-070109-104628

Gibson, R.S. 2006. Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proceedings of the Nutrition Society 65(1):51-60. https://doi.org/10.1079/pns2005474

Grantham-McGregor, S. & C. Ani. 2001. A review of studies on the effect of iron deficiency on cognitive development in children. The Journal of Nutrition 131(2): 649S-668S. https://doi.org/10.1093/jn/131.2.649s

Gregorio, G.B. 2002. Progress in breeding for trace minerals in staple crops. The Journal of Nutrition 132(3):500S-502S. https://doi.org/10.1093/jn/132.3.500s

Hawkesford, M.J. & F.J. Zhao. 2007. Strategies for increasing the selenium content of wheat. Journal of Cereal Science 46(3):282-292. https://doi.org/10.1016/j.jcs.2007.02.006

Hotz, C. 2001. Identifying populations at risk of zinc deficiency: the use of supplementation trials. Nutrition Reviews 59(3):80-84. https://doi.org/10.1111/j.1753-4887.2001.tb06992.x

Hotz, C. & K.H. Brown. 2004. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin 25(1):S91-S204. https://doi.org/10.1177/15648265040251S205

Hotz, C. & B. McClafferty. 2007. From harvest to health: Challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food & Nutrition Bulletin 28(2): 271S-279S. https://doi.org/10.1177/15648265070282s206

Imhoff-Kunsch, B., R. Flores, O. Dary & R. Martorell. 2007. Wheat flour fortification is unlikely to benefit the neediest in Guatemala. The Journal of Nutrition 137(4):1017-1022. https://doi.org/10.1093/jn/137.4.1017

Johnson, A.A.T. & R.E. Veilleux. 2000. Somatic Hybridization and Applications in Plant Breeding. Plant Breeding Reviews 20:167-225. https://doi.org/10.1002/9780470650189.ch6

Khoshgoftarmanesh, A.H., R. Schulin, R.L. Chaney, B. Daneshbakhsh & M. Afyuni. 2010. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development 30:83-107. https://doi.org/10.1051/agro/2009017

King, J.C. 2000. Determinants of maternal zinc status during pregnancy. The American Journal of Clinical Nutrition 71(5):1334s-1343s. https://doi.org/10.1093/ajcn/71.5.1334s

Lyons, G.H., Y. Genc, J.C. Stangoulis, L.T. Palmer & R.D. Graham. 2005. Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biological Trace Element Research 103:155-168. https://doi.org/10.1385/bter:103:2:155

Mayer, J.E., W.H. Pfeiffer & P. Beyer. 2008. Biofortified crops to alleviate micronutrient malnutrition. Current Opinion in Plant Biology 11(2):166-170. https://doi.org/10.1016/j.pbi.2008.01.007

McLean, E., M. Cogswell, I. Egli, D. Wojdyla & B. De Benoist. 2009. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutrition 12(4): 444-454. https://doi.org/10.1017/s1368980008002401

Nestel, P., H.E. Bouis, J. Meenakshi & W. Pfeiffer. 2006. Biofortification of staple food crops. The Journal of Nutrition 136(4):1064-1067. https://doi.org/10.1093/jn/136.4.1064

Ortiz-Monasterio, J., N. Palacios-Rojas, E. Meng, K. Pixley, R. Trethowan & R. Pena. 2007. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science 46(3): 293-307. https://doi.org/10.1016/j.jcs.2007.06.005

Petry, N., I. Egli, J.B. Gahutu, P.L. Tugirimana, E. Boy & R. Hurrell. 2012. Stable iron isotope studies in Rwandese women indicate that the common bean has limited potential as a vehicle for iron biofortification. The Journal of Nutrition 142(3):492-497. https://doi.org/10.3945/jn.111.149286

Reddy, M.B., R.F. Hurrell, M.A. Juillerat & J.D. Cook. 1996. The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. The American Journal of Clinical Nutrition 63(2): 203-207. https://doi.org/10.1093/ajcn/63.2.203

Sabeh, F., T. Wright & S. Norton. 1992. Purification and characterization of a glutathione peroxidase from the Aloe vera plant. Enzyme & Protein 47: 92-98. https://doi.org/10.1159/000468662

Sands, D.C., C.E. Morris, E.A. Dratz & A.L. Pilgeram. 2009. Elevating optimal human nutrition to a central goal of plant breeding and production of plant-based foods. Plant Science 177(5): 377-389. https://doi.org/10.1016/j.plantsci.2009.07.011

Sandstead, H.H. 1999. Improving study design. The American journal of clinical nutrition 70(1):110-110. https://doi.org/10.1093/ajcn/70.1.110

Shehu, H. & G. Jamala. 2010. Available Zn distribution, response and uptake of rice (Oriza sativa) to applied zn along a topose quence of lake gerio fadama soils at Yola, North-eastern Nigeria. Journal of American Science 6(11):1013-1016. http://www.jofamericanscience.org/journals/am-sci/am0611/136_3457am0611_1013_1016.pdf

Siegenberg, D., R. D. Baynes, T. H. Bothwell, B. J. Macfarlane, R. D. Lamparelli, N. G. Car & F. Mayet. 1991. Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. The American Journal of Clinical Nutrition 53(2):537-541. https://doi.org/10.1093/ajcn/53.2.537

Stoltzfus, R.J., J.D. Kvalsvig, H.M. Chwaya, A. Montresor, M. Albonico, J.M. Tielsch, L. Savioli & E. Pollitt. 2001. Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ 323:1389-1398. https://doi.org/10.1136/bmj.323.7326.1389

Welch, R.M. & R.D. Graham. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany 55(396):353-364. https://doi.org/10.1093/jxb/erh064

White, P.J. & M.R. Broadley. 2005. Biofortifying crops with essential mineral elements. Trends in Plant Science 10(12):586-593. https://doi.org/10.1016/j.tplants.2005.10.001

Publicado
2020-07-10
Cómo citar
Sida-Arreola, J. P., Sánchez, E., Ávila-Quezada, G. D., Acosta-Muñoz, C. H., & Zamudio-Flores, P. B. (2020). Biofortificación con micronutrientes en cultivos agrícolas y su impacto en la nutrición y salud humana: Micronutrient biofortification in agricultural crops and their impact on human nutrition and health. TECNOCIENCIA Chihuahua, 9(2), 67-74. https://doi.org/10.54167/tch.v9i2.591
Sección
El científico frente a la sociedad