Modelos murinos de diabetes para el estudio de compuestos bioactivos

Murine models of diabetes for the study of bioactive compounds

Palabras clave: rata diabética, ratón diabético, compuestos bioactivos, hipoglicemiante, antioxidante, antiinflamatorio, cicatrización

Resumen

La diabetes es una enfermedad metabólica de alta prevalencia internacional. La hiperglicemia y sus complicaciones derivadas son la principal característica de la diabetes. El desarrollo de fármacos para el control glicémico y sus complicaciones ha sido del interés de la comunidad científica por muchos años y las estrategias para obtener evidencia de los efectos biológicos de las sustancias y extractos de plantas son diversas. Los modelos murinos son herramientas experimentales que permiten comprender los mecanismos fisiopatológicos de la diabetes, así como para evaluar los efectos de compuestos obtenidos de fuentes naturales, así como sintéticos sobre la hiperglicemia, el estrés oxidativo, la inflamación y la cicatrización de heridas en ratas y ratones diabéticos. En esta revisión se describen los modelos murinos para el estudio de la diabetes más frecuentemente reportados en la literatura científica actual y las estrategias que en ellos se utilizan para llevar a cabo el estudio de la actividad biológica de extractos de plantas o compuestos sintéticos.

DOI: https://doi.org/10.54167/tch.v18i1.1402

Citas

Abdullahi, A., Amini-Nik, S. & Jeschke, M. G. (2014). Animal models in burn research. Cellular and Molecular Life Sciences 71(17): 3241–3255. https://doi.org/10.1007/s00018-014-1612-5

Abo-Salem, O. M. (2014). Kaempferol attenuates the development of diabetic neuropathic pain in mice: Possible anti-Inflammatory and anti-oxidant mechanisms. Open Access Macedonian Journal of Medical Sciences 2(3): 424–430. https://doi.org/10.3889/oamjms.2014.073

Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Leon, J., Lyons, S. K., Perry, M. Lou, Prahalad, P., Pratley, R. E., Seley, J. J., Stanton, R. C. & Gabbay, R. A. (2022). 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes care 2023 46(1): S19-S40 https://doi.org/10.2337/dc23-S002

Andersen, E. S., Deacon, C. F. & Holst, J. J. (2018). Do we know the true mechanism of action of the DPP-4 inhibitors? Diabetes, Obesity and Metabolism 20(1): 34–41. https://doi.org/10.1111/dom.13018

Arias-Díaz, J. & Balibrea, J. (2007). Modelos animales de intolerancia a la glucosa y diabetes tipo 2. Nutrición Hospitalaria 22(2): 160–168. https://www.redalyc.org/articulo.oa?id=309226715005

Arndt, T., Jörns, A. & Wedekind, D. (2018). Changes in immune cell frequencies in primary and secondary lymphatic organs of LEW.1AR1-iddm rats, a model of human type 1 diabetes compared to other MHC congenic LEW inbred strains. Immunologic Research 66: 462–470. https://doi.org/10.1007/S12026-018-9015-6

Aylwin H., C. G. (2016). Nuevos fármacos en diabetes mellitus. Revista Médica Clínica Las Condes 27(2): 235–256. https://doi.org/10.1016/j.rmclc.2016.04.013

Bell, R. H. & Hye, R. J. (1983). Animal models of diabetes mellitus: Physiology and pathology. Journal of Surgical Research 35(5): 433–460. https://doi.org/https://doi.org/10.1016/0022-4804(83)90034-3

Brito-Casillas, Y., Melián, C. & Wägner, A. M. (2016). Estudio de la patogénesis y tratamiento de la diabetes mellitus a través de modelos animales. Endocrinologia y Nutricion 63(7): 345–353. https://doi.org/10.1016/j.endonu.2016.03.011

Cárdenas-León, M., Díaz-Díaz, E., Argüelles-Medina, R., Sánchez-Canales, P., Díaz-Sánchez, V. & Larrea, F. (2009). Glicación y entrecruzamiento de proteínas en la patogénesis de la diabetes y el envejecimiento. Revista de Investigación Clínica 61(6): 505-520. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=40898

Chang, J.-H. & Gurley, S. B. (2012). Assessment of Diabetic Nephropathy in the Akita Mouse. In: Joost, HG., Al-Hasani, H., Schürmann, A. (eds) Animal Models in Diabetes Research. Methods in Molecular Biology Vol. 933. (pp. 17–29). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-068-7_2

Chen, X. Yan, Jiang, W. Wen, Liu, Y. Ling, Ma, Z. Xia & Dai, J. Qiang (2022). Anti-inflammatory action of geniposide promotes wound healing in diabetic rats. Pharmaceutical Biology 60(1): 294–299. https://doi.org/10.1080/13880209.2022.2030760

Couto, M. & Cates, C. (2019). Laboratory guidelines for animal care. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. (pp. 407–430). Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_25

Cowie, M. R. & Fisher, M. (2020). SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nature Reviews Cardiology 17: 761–772. https://doi.org/10.1038/s41569-020-0406-8

Dahlqvist, S., Ahlén, E., Filipsson, K., Gustafsson, T., Hirsch, I. B., Tuomilehto, J., Imberg, H., Ahrén, B., Attvall, S. & Lind, M. (2018). Variables associated with HbA1c and weight reductions when adding liraglutide to multiple daily insulin injections in persons with type 2 diabetes (MDI Liraglutide trial 3). BMJ Open Diabetes Research and Care 6(1): e000464. https://doi.org/10.1136/bmjdrc-2017-000464

Dalama, B. & Mesa, J. (2016). Nuevos hipoglucemiantes orales y riesgo cardiovascular. Cruzando la frontera metabólica. Revista Española de Cardiología 69(11): 1088–1097. https://doi.org/10.1016/j.recesp.2016.07.029

Dalco, L. J. & Dave, K. R. (2023). Diabetic rodent models for chronic stroke studies. In: Karamyan, V.T., Stowe, A.M. (eds) Neural Repair. Methods in Molecular Biology, Vol. 2616. (pp. 429–439). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2926-0_30

Di Magno, L., Di Pastena, F., Bordone, R., Coni, S. & Canettieri, G. (2022). The mechanism of action of biguanides: New answers to a complex question. Cancers 14(13):3220. https://doi.org/10.3390/cancers14133220

Díaz, L., Zambrano, E., Flores, M. E., Contreras, M., Crispín, J. C., Alemán, G., Bravo, C., Armenta, A., Valdés, V. J., Tovar, A., Gamba, G., Barrios-Payán, J. & Bobadilla, N. A. (2020). Ethical considerations in animal research: The principle of 3R’s. Revista de Investigacion Clinica 73(4): 199–209. https://doi.org/10.24875/RIC.20000380

Dunn, L., Prosser, H. C. G., Tan, J. T. M., Vanags, L. Z., Ng, M. K. C. & Bursill, C. A. (2013). Murine model of wound healing. Journal of Visualized Experiments (75): e50265. https://doi.org/10.3791/50265

ElSayed, N. A., Aleppo, G., Aroda, V. R., Bannuru, R. R., Brown, F. M., Bruemmer, D., Collins, B. S., Gaglia, J. L., Hilliard, M. E., Isaacs, D., Johnson, E. L., Kahan, S., Khunti, K., Leon, J., Lyons, S. K., Perry, M. Lou, Prahalad, P., Pratley, R. E., Seley, J. J., … Association, A. D. (2022). 2. Classification and diagnosis of diabetes: Standards of care in diabetes—2023. Diabetes Care 46(Supplement_1): S19–S40. https://doi.org/10.2337/dc23-S002

Fisher, M. (2022). Acarbose and alpha glucosidase inhibitors. In M. Fisher, G. A. Mckay & A. Llano (eds) Diabetes Drug Notes (pp. 229–238). Wiley Online Library. https://doi.org/https://doi.org/10.1002/9781119785033.ch11

Fu, X., Zhou, X., Liu, Y., Lei, Y., Xie, H., Leng, Y., Gao, H. & Xie, C. (2021). Exploration of SQC formula effect on type 2 diabetes mellitus by whole transcriptome profile in rats. Endocrine, Metabolic y Immune Disorders Drug Targets 21(7): 1261–1269. https://doi.org/10.2174/1871530321666210225125141

Furman, B. L. (2021). Streptozotocin-induced diabetic models in mice and rats. Current Protocols 1(4). https://doi.org/10.1002/CPZ1.78

Garrido Calvo, A. M., Cía Blasco, P. & Pinós Laborda, P. J. (2003). El pie diabético. Medicina Integral 41(1): 8–17. https://www.elsevier.es/es-revista-medicina-integral-63-articulo-el-pie-diabetico-13044043

Guerrero-Romero, F., Simental-Mendía, L. E., Guerra Rosas, M. I., Sayago-Monreal, V. I., Morales Castro, J. & Gamboa-Gómez, C. I. (2021). Hypoglycemic and antioxidant effects of green tomato (Physalis ixocarpa Brot.) calyxes’ extracts. Journal of Food Biochemistry 45(4): e13678. https://doi.org/10.1111/JFBC.13678

Guerrero-Romero, F., Simental-Mendía, L. E., Martínez-Aguilar, G., Sánchez-Meraz, M. A. & Gamboa-Gómez, C. I. (2020). Hypoglycemic and antioxidant effects of five commercial turmeric (Curcuma longa) supplements. Journal of Food Biochemistry 44(9): e13389. https://doi.org/10.1111/JFBC.13389

Guilbaud, A., Howsam, M., Niquet-Léridon, C., Delguste, F., Boulanger, E. & Tessier, F. J. (2019). The LepRdb/db mice model for studying glycation in the context of diabetes. Diabetes/Metabolism Research and Reviews 35(2): e3103. https://doi.org/10.1002/dmrr.3103

Hallschmid, M. (2021). Intranasal insulin. Journal of Neuroendocrinology 33(4 A Special Issue of neuroendocrine review articles to mark the centenary of the discovery of insulin): e12934. https://doi.org/https://doi.org/10.1111/jne.12934

He, X., Zhang, T., Tolosa, M., Goru, S. K., Chen, X., Misra, P. S., Robinson, L. A. & Yuen, D. A. (2019). A new, easily generated mouse model of diabetic kidney fibrosis. Scientific Reports 9: 12549. https://doi.org/10.1038/s41598-019-49012-4

Khan, R. M. M., Chua, Z. J. Y., Tan, J. C., Yang, Y., Liao, Z. & Zhao, Y. (2019). From pre-diabetes to diabetes: Diagnosis, treatments and translational research. MDPI Medicina 55(9): 546. https://doi.org/10.3390/medicina55090546

Kumar, S., Mittal, A., Babu, D. & Mittal, A. (2021). Herbal medicines for diabetes management and its secondary complications. Current Diabetes Reviews 17(4): 437-456. https://doi.org/10.2174/1573399816666201103143225

Luo, Y., Peng, B., Wei, W., Tian, X. & Wu, Z. (2019). Antioxidant and anti-diabetic activities of polysaccharides from Guava leaves. MDPI Molecules 24(7): 1343. https://doi.org/10.3390/MOLECULES24071343

Luo, X. M., Yan, C. & Feng, Y. M. (2021). Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Advanced Drug Delivery Reviews 172: 234-248. https://doi.org/10.1016/j.addr.2021.01.004.

Mahana, A., Hammoda, H. M., Khalifa, A. A., Elblehi, S. S., Harraz, F. M. & Shawky, E. (2023). Integrated serum pharmacochemistry and network pharmacology analyses reveal the bioactive metabolites and potential functional mechanism of ground cherry (Physalis pruinosa L.) in treatment of type 2 diabetes mellitus in rats. Journal of Ethnopharmacology 300: 115750. https://doi.org/10.1016/j.jep.2022.115750

Martín-Carro, B., Donate-Correa, J., Fernández-Villabrille, S., Martín-Vírgala, J., Panizo, S., Carrillo-López, N., Martínez-Arias, L., Navarro-González, J. F., Naves-Díaz, M., Fernández-Martín, J. L., Alonso-Montes, C. & Cannata-Andía, J. B. (2023). Experimental models to study diabetes mellitus and its complications: Limitations and new opportunities. MDPI Molecular Sciences 24(12): 10309. https://doi.org/10.3390/ijms241210309

Martínez-Higuera, A., Rodríguez-Beas, C., Villalobos-Noriega, J. M. A., Arizmendi-Grijalva, A., Ochoa-Sánchez, C., Larios-Rodríguez, E., Martínez-Soto, J. M., Rodríguez-León, E., Ibarra-Zazueta, C., Mora-Monroy, R., Borbón-Nuñez, H. A., García-Galaz, A., Candia-Plata, M. del C., López-Soto, L. F. & Iñiguez-Palomares, R. (2021). Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Scientific Reports 11: 11312. https://doi.org/10.1038/s41598-021-90763-w

Maruhashi, T. & Higashi, Y. (2021). Pathophysiological association between diabetes mellitus and endothelial dysfunction. MDPI Antioxidants 10(8): 1306. https://doi.org/10.3390/antiox10081306

Miyazaki, A., Hanafusa, T., Yamada, K., Miyagawa, J., Fujino-Kurihara, H., Nakajima, H. & Tarui, S. (1985). Predominance of T lymphocytes in pancreatic islets and spleen of pre-diabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. exp. Immunol 60 (3): 622–630. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1577215/

Nauck, M. A., Wefers, J. & Meier, J. J. (2021). Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. The Lancet Diabetes y Endocrinology 9(8): 525–544. https://doi.org/10.1016/S2213-8587(21)00113-3

Olivares, A. M., Althoff, K., Chen, G. F., Wu, S., Morrisson, M. A., DeAngelis, M. M. & Haider, N. (2017). Animal models of diabetic retinopathy. Current Diabetes Reports 17: 93. https://doi.org/10.1007/s11892-017-0913-0

Oroian, M. & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International 74: 10–36. https://doi.org/https://doi.org/10.1016/j.foodres.2015.04.018

Pandey, S. & Dvorakova, M. C. (2019). Future perspective of diabetic animal models. Endocrine, Metabolic y Immune Disorders - Drug Targets 20(1): 25–38. https://doi.org/10.2174/1871530319666190626143832

Politis, M. J. & Dmytrowich, A. (1998). Promotion of second intention wound healing by emu oil lotion: Comparative results with Furasin, Polysporin, and Cortisone. Plastic and Reconstructive Surgery 102(7): 2404-2407. https://goo.su/Vao1cQ7

Rabbani, N. & Thornalley, P. J. (2018). Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney International 93(4): 803–813. https://doi.org/10.1016/J.KINT.2017.11.034

Reidy, P. T., Monnig, J. M., Pickering, C. E., Funai, K. & Drummond, M. J. (2021). Preclinical rodent models of physical inactivity-induced muscle insulin resistance: Challenges and solutions. Journal of Applied Physiology 130(3): 537–544. https://doi.org/10.1152%2Fjapplphysiol.00954.2020

Rodríguez Chula, E. & García Carmona, M (2020). Efectividad de la terapia de presión negativa en la cicatrización de las heridas crónicas en el pie de pacientes con diabetes. Universidad Privada Norbert Wiener - Tésis. https://repositorio.uwiener.edu.pe/handle/20.500.13053/3864

Rosas-Saucedo, J., Rosas-Guzmán, J., Agustín Mesa-Pérez, J., González-Ortiz, M., Martínez-Abundis, E., González-Suárez, R., Sinay, I. & Lyra, R. (2019). Sulfonilureas. Estado actual de su empleo en América Latina. Documento de posición de la Asociación Latinoamericana de Diabetes. Revista de La ALAD 9(2). https://doi.org/10.24875/ALAD.19000375

Santos-Sánchez, N. F., Salas-Coronado, R., Villanueva-Cañongo, C. & Hernández-Carlos, B. (2019). Antioxidant compounds and their antioxidant mechanism. In: Emad Shalaby (ed) Antioxidants (pp. 10: 1–29). IntechOpen. https://www.intechopen.com/chapters/66259

Seow, K. M., Juan, C. C., Wang, P. H., Ho, L. T. & Hwang, J. L. (2012). Expression levels of vascular cell adhesion molecule-1 in young and nonobese women with polycystic ovary syndrome. Gynecologic and Obstetric Investigation 73(3): 236–241. https://doi.org/10.1159/000334175

Tilg, H. & Moschen, A. R. (2008). Inflammatory mechanisms in the regulation of insulin resistance. Molecular Medicine 14: 222–231. https://doi.org/10.2119/2007-00119.Tilg

Tu, Z., Zhong, Y., Hu, H., Shao, D., Haag, R., Schirner, M., Lee, J., Sullenger, B. & Leong, K. W. (2022). Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials 7: 557–574. https://doi.org/10.1038/s41578-022-00426-z

Unuofin, J. O. & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxidative Medicine and Cellular Longevity 2020: 1356893. https://doi.org/10.1155/2020/1356893

Wang, H., Teng, Y., Li, S., Li, Y., Li, H., Jiao, L. & Wu, W. (2021). UHPLC-MS-based serum and urine metabolomics reveals the anti-diabetic mechanism of Ginsenoside Re in type 2 diabetic rats. MDPI Molecules 26(21): 6657. https://doi.org/10.3390/MOLECULES26216657

Weiss, H., Bleich, A., Hedrich, H. J., Kölsch, B., Elsner, M., Jörns, A., Lenzen, S., Tiedge, M. & Wedekind, D. (2005). Genetic analysis of the LEW.1AR1-iddm rat: An animal model for spontaneous diabetes mellitus. Mammalian Genome 16: 432–441. https://doi.org/10.1007/s00335-004-3022-8

Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K. & Morgan, N. G. (2009). Analysis of islet inflammation in human type 1 diabetes. Clinical and Experimental Immunology 155(2): 173–181. https://doi.org/10.1111/j.1365-2249.2008.03860.x

Yabeta, J., Moscoso, A. & Osorio, P. (2022). Relación de las características farmacológicas de los hipoglucemiantes orales usados en pacientes con el tratamiento de diabetes mellitus tipo II. Universidad - Ciencia y Sociedad 23(2): 47–51. https://doi.org/10.61070/ucs.v23i2.27

Yagihashi, S. (2023). Contribution of animal models to diabetes research: Its history, significance, and translation to humans. Journal of Diabetes Investigation 14(9): 1015–1037. https://doi.org/10.1111/jdi.14034

Publicado
2024-02-20
Cómo citar
López Soto, L. F., Candia Plata, C., Reyes Márquez, V., Arredondo Damián, J., Mata Pineda, A. L., Álvarez Hernández, G., Lorenzana Basaldúa, R., & Soto Guzmán, A. (2024). Modelos murinos de diabetes para el estudio de compuestos bioactivos: Murine models of diabetes for the study of bioactive compounds. TECNOCIENCIA Chihuahua, 18(1), e1402. https://doi.org/10.54167/tch.v18i1.1402