Nanocompuestos bio-basados de polimirceno/nanocristales de celulosa obtenidos por polimerización “in situ”

Bio-based nanocomposites of polymyrcene/celluloce nanocrystals obtained by “in situ” polymerization

Palabras clave: nanocristales de celulosa, elastómeros bio-basados, nanocompuestos, β-mirceno, polimerización por plasma

Resumen

Se reporta la preparación de nanocompuestos elastoméricos 100 % bio-basados a partir de la polimerización de β-mirceno usando como carga nanocristales de celulosa, mediante un proceso “in situ”, es decir, llevar a cabo la polimerización en presencia de las nanocargas. La polimerización fue vía coordinación en solución usando un sistema catalítico base neodimio, NdV3/DIBAH/ Me2SiCl2 en relación molar 1/20/1 y variando la concentración de nanocristales de celulosa de 0.5, 1.5, 3 y 5 % en peso, los cuales fueron probados con y sin modificación superficial por plasma utilizando β-mirceno como modificante. Dicha modificación se demostró caracterizando los materiales mediante FTIR, XRD y TGA. Los nanocompuestos elastoméricos obtenidos se caracterizaron mediante GPC para la obtención de los pesos moleculares, así como por NMR para calcular el porcentaje de estructuras 1,4 (cis + trans) vs 3,4. A medida que se incrementó el porcentaje de la carga en las polimerizaciones se produjeron matrices poliméricas con mayores pesos moleculares y amplias distribuciones, pero el alto contenido de la microestructura cis-1,4 no se vio comprometido. La temperatura de transición vítrea tampoco fue significativamente modificada por las nanocargas, pero sí se observó un incremento en los módulos G’ y G’’ por la presencia de éstas.

DOI: https://doi.org/10.54167/tch.v17i4.1337

Citas

Aguayo, M. G., A. Fernández Pérez, G. Reyes, C. Oviedo, W. Gacitúa, R. Gonzalez & O. Uyarte. (2018). Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers (Basel) 10(10):1145. https://doi.org/10.3390/polym10101145

Alanis, A., J. Hernández-Valdés, M. G. Neira-Velázquez, R. Lopez, R. Mendoza, A. P. Mathew, R. Díaz de León & L. Valencia. (2019). Plasma surface-modification of cellulose nanocrystals: a green alternative towards mechanical reinforcement of ABS. RSC Advances 9(30):17417-17424. https://doi.org/10.1039/C9RA02451D

Bendahou, A., H. Kaddami & A. Dufresne.(2010). Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. European Polymer Journal 46(4):609-620. https://doi.org/10.1016/j.eurpolymj.2009.12.025

Bolton, J. M., M. A. Hillmyer & T. R. Hoye. (2014). Sustainable thermoplastic elastomers from terpene-derived monomers. ACS Macro Letters 3(8):717-720. https://doi.org/10.1021/mz500339h

Bras, J., M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El-Wakil & A. Dufresne. (2010). Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops and Products 32(3):627-633. https://doi.org/10.1016/j.indcrop.2010.07.018

Cao, L., D. Yuan, C. Xu & Y. Chen. (2017). Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale 9(40):15696-15706. https://doi.org/10.1039/C7NR05011A

Díaz de León, R., R. López, L. Valencia, R. Mendoza, J. Cabello & J. Enriquez. (2018). Towards bioelastomers via coordination polymerization of renewable terpenes using neodymium-based catalyst systems. Key Engineering Materials 779: 115–121. https://doi.org/10.4028/www.scientific.net/KEM.779.115

Díaz de León Gómez, R. E., F. J. Enriquez-Medrano, H. Maldonado Textle, R. Mendoza Carrizales, K. Reyes Acosta, H. R. López González, J. L. Olivares Romero & L. E. Lugo Uribe. (2016). Synthesis and characterization of high cis-polymyrcene using neodymium-based catalysts. The Canadian Journal of Chemical Engineering 94(5):823–832. https://doi.org/10.1002/cjce.22458

Ding, Ma. (2023). Transforming end-of-life plastics for a better world. Nature Sustainability 6:1142-1143. https://doi.org/10.1038/s41893-023-01224-3

Eggersdorfer, M. (2000). Terpenes. ULLMANN’s Encyclopedia of Industrial Chemistry 36:29–45. https://doi.org/10.1002/14356007.a26_205

Espinosa Andrews, H., Garcia Marquez, E. & Gastélum Martínez, E. (2016). Los compuestos Bioactivos y Tecnologías de Extracción. NanoBio, CIATEJ. ISBN 978-607-97421-5-7 https://ciatej.mx/files/divulgacion/divulgacion_5a43b85320f15.pdf

Fortman, D. J., J. P. Brutman, G. X. De Hoe, R. L. Snyder, W. R. Dichtel & M. A. Hillmyer. (2018). Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustainable Chemistry & Engineering 6(9):11145-11159. https://doi.org/10.1021/acssuschemeng.8b02355

Friebe, L., H. Windisch, O. Nuyken & W. Obrecht. (2004). Polymerization of 1,3-butadiene initiated by neodymium versatate/triisobutylaluminum/ethylaluminum sesquichloride: impact of the alkylaluminum cocatalyst component. Journal of Macromolecular Science, Part A. Pure and Applied Chemistry 41(3):245-256. https://doi.org/10.1081/MA-120028204

Hilschmann, J. & G. Kali. (2015). Bio-based polymyrcene with highly ordered structure via solvent free controlled radical polymerization. European Polymer Journal 73:363-373. https://doi.org/10.1016/j.eurpolymj.2015.10.021

Imhof, P. & van der Waal, J. C. (Eds.). (2013). Catalytic process development for renewable materials. WILEY-VCH. https://doi.org/10.1002/9783527656639

Loughmari, S., A. Hafid, A. Bouazza, A. E. Bouadili, P. Zinck & M. Visseaux. (2012). Highly stereoselective coordination polymerization of β-myrcene from a lanthanide-based catalyst: access to bio-sourced elastomers. Journal of Polymer Science Part A: Polymer Chemistry 50(14):2898-2905. https://doi.org/10.1002/pola.26069

Manuiko, G. V., I. I. Salakhov, G. A. Aminova, I. G. Akhmetov, G. S. Dyakonov, V. V. Bronskaya & E. V. Demidova. (2010). Mathematical modeling of 1,3-butadiene polymerization over a neodymium-based catalyst in a batch reactor with account taken of the multisite nature of the catalyst and chain transfer to the polymer. Theoretical Foundations of Chemical Engineering 44:139-149. https://doi.org/10.1134/S0040579510020041

Nagarajan, K. J., A. N. Balaji & N. R. Ramanujam. (2018). Isolation and characterization of cellulose nanocrystals from Saharan aloe vera cactus fibers. International Journal of Polymer Analysis and Characterization 25(2):51-64. https://doi.org/10.1080/1023666X.2018.1478366

Nam, S., A. D. French, B. D. Condon & M. Concha. (2016). Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydrate Polymers 135:1-9. https://doi.org/10.1016/j.carbpol.2015.08.035

Neira-Velázquez, M. G., L. F. Ramos de Valle, E. Hernández-Hernández & I. Zapata-González. (2008). Surface modification of carbon nanofibers (CNFs) by plasma polymerization of methylmethacrylate and its effect on the properties of PMMA/CNF nanocomposites. e-Polymers 8:162, 1-11. https://doi.org/10.1515/epoly.2008.8.1.1855

Norliyana Idris, S., May Amelia, T. S., Bhubalan, K., Mohd Lazim, A. M., Mohd Ahmad Zakwan, N. A., Imran Jamaluddin, M., Santhanam, R., Abdullah Amirul, A., Vigneswari S & Ramakrishna, S. (2023). The degradation of single-use plastics and commercially viable bioplastics in the environment: A review. Environmental Research 231(Part 1), 115988:1-15. https://doi.org/10.1016/j.envres.2023.115988

Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla & D. K. Johnson. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3(10):1-10. https://doi.org/10.1186/1754-6834-3-10

Peng, Y., D. J. Gardner, Y. Han, A. Kiziltas, Z. Cai & M. A. Tshabalala. (2013). Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379-2392. https://doi.org/10.1007/s10570-013-0019-z

Reid, M. S., M. Villalobos & E. D. Cranston. (2017). Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33(7):1583-1598. https://doi.org/10.1021/acs.langmuir.6b03765

Sahu, P. & A. K. Bhowmick. (2019). Redox emulsion polymerization of terpenes: mapping the effect of the system, structure, and reactivity. Industrial & Engineering Chemistry Research 58(46):20946-20960. https://doi.org/10.1021/acs.iecr.9b02001

Sarkar, P. & A. K. Bhowmick. (2014). Synthesis, characterization and properties of a bio-based elastomer: Polymyrcene. RSC Advances 4(106):61343–61354. https://doi.org/10.1039/C4RA09475A

Tang, K. H. D. (2023). Enhanced plastic economy: a perspective and a call for international action. Enviromental Science: Advances 2(8):1011-1018. https://doi.org/10.1039/D3VA00057E

Wang, F., H. Liu, W. Zheng, J. Guo, C. Zhang, L. Zhao, H. Zhang, Y. Hu, C. Bai & X. Zhang. (2013). Fully-reversible and semi-reversible coordinative chain transfer polymerizations of 1,3-butadiene with neodymium-based catalytic systems. Polymer 54(25):6716-6724. https://doi.org/10.1016/j.polymer.2013.10.031

Xu, S. H., J. Gu, Y. F. Luo & D. M. Jia. (2012). Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites. Express Polymer Letters 6(1):14-25. http://dx.doi.org/10.3144/expresspolymlett.2012.3

Zhang, C., Y. Dan, J. Peng, L-S. Turng, R. Sabo & C. Clemons. (2014). Thermal and mechanical properties of natural rubber composites reinforced with cellulose nanocrystals from southern pine. Advances in Polymer Technology 33(S1):21448, E1-E7. https://doi.org/10.1002/adv.21448

Publicado
2023-12-30
Cómo citar
Magaña, I., Enríquez Medrano, F. J., Cabrera, C., Córdova, T., Díaz Elizondo, A., Mendoza, R., Saade, H., Olivares Romero, J. L., & Díaz de León, R. (2023). Nanocompuestos bio-basados de polimirceno/nanocristales de celulosa obtenidos por polimerización “in situ”: Bio-based nanocomposites of polymyrcene/celluloce nanocrystals obtained by “in situ” polymerization . TECNOCIENCIA Chihuahua, 17(4), e1337. https://doi.org/10.54167/tch.v17i4.1337