Materiales supramoleculares: quimiosensores y otras aplicaciones prácticas

Supramolecular materials: Chemosensors and other practical applications

Palabras clave: sensores, material supramolecular, quimiosensores, reconocimiento molecular, aplicaciones

Resumen

La química supramolecular tiene como uno de sus objetos de estudio el reconocimiento molecular, el cual es un proceso que involucra cierta complementariedad y selectividad por parte de las especies que interactúan entre sí para generar el complejo o supramolécula, este proceso de reconocimiento específico de una molécula hacia otro se ha expandido y aplicado al diseño de sistemas que funcionen como sensores moleculares de diferentes especies ya sea de interés biológico o industrial. El objetivo del presente artículo es presentar el crecimiento y los principales logros que ha tenido este campo de la ciencia y tecnología mediante la revisión de conceptos clásicos en la química supramolecular y la presentación de ejemplos que muestran los principales resultados en cuanto al incremento y el avance en el desarrollo de sensores moleculares disponibles en la actualidad.

DOI: https://doi.org/10.54167/tch.v17i4.1316

Citas

Abadi, M. D. M., Chamsaz, M., Arbab-Zavar, M. H. & Shemirani, F. (2013) Supramolecular dispersive liquid-liquid microextraction based solidification of floating organic drops for speciation and spectrophotometric determination of chromium in real samples. Anal. Methods 5(12): 2971-2977. https://doi.org/10.1039/C3AY00036B

Abd El-Rahman, M. K., Mazzone, G., Mahmoud, A. M., Sicilia, E. & Shoeib, T. (2019) Spectrophotometric determination of choline in pharmaceutical formulations via host-guest complexation with a biomimetic calixarene receptor. Microchem. J. 146: 735-741. http://dx.doi.org/10.1016/j.microc.2019.01.046

Al-Saidi, H. M. & Khan, S. (2022) Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: a review. Critical Reviews in Analytical Chemistry 13:1-17. https://doi.org/10.1080/10408347.2022.2063017

Altunay, N. & Katin, K. P. (2020) Ultrasonic-assisted supramolecular solvent liquid-liquid microextraction for determination for manganese and zinc at trace levels in vegetables: experimental and theoretical studies. Journal of Molecular Liquids 310: 1-9. https://doi.org/10.1016/j.molliq.2020.113192

Anslyn, E. V. & Breslow, R. (1989). On the mechanism of catalysis by ribonuclease: cleavage and isomerization of the dinucleotide UpU catalyzed by imidazole buffers. Journal of the American Chemical Society 111(12): 4473–4482. https://doi.org/10.1021/ja00194a050

Ayankojo, A. G., Reut, J., Ciocan, V., Öpik, A. & Syritski, V. (2020) Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 209: 120502. https://doi.org/10.1016/j.talanta.2019.120502

Aydin, F., Yilmaz, E. & Soylak, M. (2015) Supramolecular solvent-based microextraction method for cobalt traces in food samples with optimization Plackett-Burman and central composite experimental design. RSC Adv. 5(115): 94879-94886. https://doi.org/10.1039/C5RA15856G

Baldini, L., Cacciapaglia, R., Casnati, A., Mandolini, L., Salvio, R., Sansone, F. & Ungaro, R. (2012). Upper Rim Guanidinocalix[4]arenes as Artificial Phosphodiesterases. The Journal of Organic Chemistry 77(7): 3381–3389. https://doi.org/10.1021/jo300193y

Baranwal, J., Barse, B., Gatto, G., Broncova, G. & Kumar, A. (2022) Electrochemical sensors and their applications: a review. Chemosensors 10(9): 363. https://doi.org/10.3390/CHEMOSENSORS10090363

Basabe-Desmonts, L., Reinhoudt, D. N. & Crego-Calama, M. (2007). Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 36(6): 993-1017. https://doi.org/10.1039/B609548H

Beer, P., Barendt, T. A. & Lim, J. Y. C. (2022). Supramolecular chemistry: Fundamentals and Applications. Oxford University Press. ISBN: 9780198832843

Beatty, M. A., Sellinger, A.J., Li. Y. Q. & Hof, F. (2019) Parallel synthesis and screening of supramolecular chemosensors that achieve fluorescent turn-on detection of drugs on saliva. J. Am. Chem. Soc. 141(42): 16763-16771. http://dx.doi.org/10.1021/jacs.9b07073

Breslow, R. & Schmuck, C. (1996). Goodness of Fit in Complexes between Substrates and Ribonuclease Mimics: Effects on Binding, Catalytic Rate Constants, and Regiochemistry. Journal of the American Chemical Society 118(28): 6601–6605. https://doi.org/10.1021/ja954307n

Chandra, F., Dutta, T. & Koner, A. L. (2020) Supramolecular encapsulation of a neurotransmitter serotonin by cucurbit[7]uril. Front. Chem. 8: 582757. https://doi.org/10.3389/fchem.2020.582757

Chen, J., Zhang, Y., Meng, Z., Guo, L., Yuan, X., Zhang, Y., Chai, Y., Sessler, J. L., Meng, Q. & Li, C. (2020) Supramolecular combination chemotherapy: a pH-responsive co-encapsulation drug delivery system. Chem. Sci. 11(24): 6275-6282. https://doi.org/10.1039%2Fd0sc01756f

de Silva, A. P., Vance, T. P., S.-West, M. E. & Wright, G. D. (2008) Bright molecules with sense, logic, numeracy and utility. Org. Biomol. Chem. 6(14): 2468-2480. https://doi.org/10.1039/B802963F

Díaz-Álvarez, M. & Martín-Esteban, A. (2021) Molecularly imprinted polymer-quantum dot materials in optical sensors: an overview of their synthesis and applications. Biosensors 11(3): 79. https://doi.org/10.3390/BIOS11030079

Galinski, B., Chojnacki, J. & Wagner-Wysiecka, E. (2023) Simple colorimetric copper(II) Sensor-Spectral characterization and possible applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 293: 122472. https://doi.org/10.1016/j.saa.2023.122472

Gan, Y., Yin, G., Xu, Z., Zhou, H., Yu, T., Li, H. & Yin, P. (2023) A dual-functional fluorescent probe for simultaneous visualization and quantification of Au and Pd species in environmental and biological systems. Chemical Engineering Journal 451(4): 138437. https://doi.org/10.1016/j.cej.2022.138437

Imamachi, K., Stefánsson, E., Ohira, A. & Tanito, M. (2019) Treatment of non-infectious ophthalmic inflammatory diseases with 1.5% dexamethasone γ-cyclodextrin nanoparticle eye drops. Acta Ophthalmologica 97(8): 824-827. https://doi.org/10.1111/aos.14119

Jalili, V., Zendehdel, R. & Barkhordari, A. (2021) Supramolecular solvent-based microextraction techniques for sampling and preconcentration of heavy metals: a review. Reviews in Analytical Chemistry 40(1): 93-107. https://doi.org/10.1515/revac-2021-0130

Jin, T. (2010) Near-infrared fluorescence detection of acetylcholine in aqueous solution using a complex of rhodamine 800 and p-sulfonato-calix[8]arene. Sensors 10(3): 2438-2449. https://doi.org/10.3390/s100302438

Kadja, G. T. M., Culsum, N. T. U., Mardiana, S., Azhari, N. J., Fajar, A. T. N. & Irkham. (2022) Recent advances in the enhanced sensing performance of zeolite-based materials. Materialstoday Communications 33: 104331. https://doi.org/10.1016/J.MTCOMM.2022.104331

Kelly, T. R., Bridger, G. & Zhao, C. (1990). Bisubstrate reaction templates. Examination of the consequences of identical versus different binding sites. Journal of the American Chemical Society 112(22): 8024–8034. https://doi.org/10.1021/ja00178a027

Krämer, J., Kang, R., Grimm, L. M., De Cola, L., Picchetti, P. & Biedermann, F. (2022) Molecular probes, chemosensors, and nanosensors for optical detection of biorelevant molecules and ions in aqueous media and biofluids. Chem. Rev. 122(3): 3459-3636. https://doi.org/10.1021/acs.chemrev.1c00746

Kubik, S. (2019). Supramolecular chemistry in water. John Wiley & Sons. https://doi.org/10.1002/9783527814923

Kubik, S. (2022). When molecules meet in Water‐Recent contributions of supramolecular chemistry to the understanding of molecular recognition processes in water. ChemistryOpen 11(4): e202200028. https://doi.org/10.1002/open.202200028

Kumar, V., Kim, H., Pandey, B., James, T. D., Yoon, J. & Anslyn, E. V. (2023) Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: a legacy of the 21st century. Chem. Soc. Rev. 52(2): 663-704. https://doi.org/10.1039/D2CS00651K

Langton, M. J., Serpell, C. J. & Beer, P. D. (2015). Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective. Angewandte Chemie 55(6): 1974–1987. https://doi.org/10.1002/anie.201506589

Lin, Y., Su, Y., Li, Z. & Chen, Y. (2022) Supramolecular combination cancer therapy based on macrocyclic supramolecular materials. Polymers 14(22): 4855. https://doi.org/10.3390/polym14224855

Menon, S., Mathew, M. R., Sam, S., Keerthi, K. & Kumar, K. G. (2020) Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. Journal of Electroanalyical Chemistry 878: 114596. https://doi.org/10.1016/J.JELECHEM.2020.114596

Mizukami, S., Tagano, T., Urano, Y., Odani, A. & Kikuchi, K. (2002) A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J. Am. Chem. Soc. 124(15): 3920-3925. https://doi.org/10.1021/ja0175643

Mock, W. L., Irra, T. A., Wepsiec, J. P. & Manimaran, T. (1983). Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis. Journal of Organic Chemistry 48(20): 3619–3620. https://doi.org/10.1021/jo00168a070

Mutihac, R. C., Bunaciu, A. A., Buschmann, H. J. & Mutihac, L. (2020) A brief overview on supramolecular analytical chemistry of cucurbit(n)urils and hemicucurbit(n)urils. J. Incl. Phenom. Chem. 98(3-4): 137–148. https://doi.org/10.1007/s10847-020-01019-5

Nilan, M. & Hennig, A. (2022) Enzyme assays with supramolecular sensors-the label-free approach. RSC Adv. (12): 10725-10748. https://doi.org/10.1039/D1RA08617K

Norato, M. A., Beasley, M. H., Campbell, S. G., Coleman, A. D., Geeting, M. W., Guthrie, J. W. Kennell, C. W., Pierce, R. A., Ryberg, R. C., Walker, D. D., Law, J. D. & Todd, T. A. (2007) Demonstration of the caustic-side solvent extraction process for the removal of 137Cs from Savannah River site high level waste. Separation Science & Technology 38(12-13): 2647-2666. https://doi.org/10.1081/SS-120022565

Oberacher, H., Pitterl, F., Erb, R. & Plattner, S. (2015) Mass spectrometric methods for monitoring redox processes in electrochemical cells. Mass. Spectrom. Rev. 34(1): 64 - 92. https://doi.org/10.1002/MAS.21409

Oshikawa, Y., Furuta, K., Tanaka, S. & Ojida, A. (2016) Cell surface anchored fluorescent probe capable of real-time imaging of single mast cell degranulation based on histamine-induced coordination displacement. Anal. Chem. 88(3): 1526–1529. https://doi.org/10.1021/acs.analchem.5b04758

Ozkantar, N., Soylak, M. & Tuzen, M. (2019) Determination of copper using supramolecular solvent-based microextraction for food, spices and water samples prior to analysis by flame atomic absorption spectrometry. Atomic Spectroscopy. 40(1): 17-23. http://dx.doi.org/10.46770/AS.2019.01.003

Panhwar, A. H., Kazi, T., Afridi, H. I., Shah, F., Arain, S. A., Ullah, N., Shahzadi, M., Brahman, K. D. & Khan, A. R. (2016) Preconcentration of cadmium in water and hair by supramolecular solvent-based dispersive liquid-liquid microextraction. Analytical Letters 49(15): 2436-2445. https://doi.org/10.1080/00032719.2016.1149189

Patel, H. H., Trivedi, M., Maniar, M., Ren, C. & Dave, R.H. (2018) Effect of β-cyclodextrin and hydroxypropyl β-cyclodextrin on aqueous stability, solubility, and dissolution of novel anti-cancer drug rigosertib. Journal of Pharmaceutical Research International 21(3): 1-20. http://dx.doi.org/10.9734/JPRI/2018/39890

Qian, R. C. & Long, Y. T. (2018) Wearable chemosensors: A review of recent progress. Chemistry Open 7(2): 118-130. https://doi.org/10.1002/OPEN.201700159

Rastegar, A., Alahabadi, A., Esrafili, A., Rezai, Z. & Hosseini-Bandegharaei, A. (2016) Application of supramolecular solvent-based dispersive liquid-liquid microextraction for trace monitoring of lead in food samples. Anal. Methods 8(27): 5533-5539. https://doi.org/10.1039/C6AY01463A

Rosa-Gastaldo, D., Scopano, A., Zaramella, M. & Mancin, F. (2020) Nanoscale supramolecular probes for the naked-eye detection of illicit drugs. ACS Appl. Nano Mater. 3(10): 9616–9621. https://dx.doi.org/10.1021/acsanm.0c02370?ref=pdf

Salvio, R., Mandolini, L. & Savelli, C. (2013). Guanidine–Guanidinium Cooperation in Bifunctional Artificial Phosphodiesterases Based on Diphenylmethane Spacers; gem-Dialkyl Effect on Catalytic Efficiency. Journal of Organic Chemistry 78(14): 7259–7263. https://doi.org/10.1021/jo401085z

Salvio, R., Volpi, S., Cacciapaglia, R., Sansone, F., Mandolini, L. & Casnati, A. (2016). Phosphoryl Transfer Processes Promoted by a Trifunctional Calix[4]arene Inspired by DNA Topoisomerase I. Journal of Organic Chemistry 81(19): 9012–9019. https://doi.org/10.1021/acs.joc.6b01643

Saylan, Y., Erdem, O., Inci, F. & Denizli, A. (2020) Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 5(2): 20. https://doi.org/10.3390/biomimetics5020020

Schneider, H. J. (2009) Binding mechanisms in supramolecular complexes. Angewandte Chemie International Edition 48(22): 3924-3977. https://doi.org/10.1002/ANIE.200802947

Schneider, H. J. (2016) Efficiency parameters in artificial allosteric systems. Org. Biomol. Chem. 14(34): 7994-8001. https://doi.org/10.1039/C6OB01303A

Sedghi, R., Javadi, H., Heidari, B., Rostami, A. & S. Varma, R. (2019) Efficient optical and UV–Vis chemosensor based on chromo probes–polymeric nanocomposite hybrid for selective recognition of fluoride ions. ACS Omega 4(14): 16001–16008. https://doi.org/10.1021/acsomega.9b02098

Sergeyeva, T., Yarynka, D., Piletska, E., Linnik, R., Zaporozhets, O., Brovko, O., Piletsky, S. & El’skaya, A. (2019) Development of a smartphone-based biomimetic sensor for aflatoxin B1 detection using molecularly imprinted polymer membranes. Talanta 201: 204-210. https://doi.org/10.1016/j.talanta.2019.04.016

Seto, D., Soh, N., Nakano, K. & Imato, T. (2010) An Amphiphilic fluorescent probe for the visualization of histamine in living cells. Bioorg. Med. Chem. Lett. 20(22): 6708-6711. https://doi.org/10.1016/j.bmcl.2010.09.003

Shampsipur, M., Hosseini, M., Alizadeh, K., Alizadeh, N., Yari, A., Caltagirone, C. & Lippolis, V. (2005) Novel fluorometric bulk optode membrane based on a dansylamidopropyl pendant arm derivative of 1-aza-4, 10-dithia-7-oxacyclododecane ([12]ane NS2O) for selective nanomolar detection of Hg(II) ions. Analytica Chimica Acta 533(1): 17-24. https://doi.org/10.1016/J.ACA.2004.10.069

Shome, A. (2023) Applications of supramolecular materials in real world: a mini review. Asian Journal of Chemistry 35 (2): 305-315. https://doi.org/10.14233/ajchem.2023.26952

Sinn, S., Spuling, E., Brase, S. & Biedermann, F. (2019) Rational design and implementation of a cucurbit[8]uril-based indicator-displacement assay for application in blood serum. Chem. Sci. 10 (27): 6584-6593. https://doi.org/10.1039/C9SC00705A

Song, X., Zhang, Z., Zhu, J., Wen, Y., Zhao, F., Lei, L., Phan-Thien, N. & Khoo, B. C., Li, J. (2020) Thermoresponsive hydrogel induced by dual supramolecular assemblies and its controlled release property for enhanced anticancer drug delivery. Biomacromolecules 21(4): 1516–1527. https://doi.org/10.1021/acs.biomac.0c00077

Steed, J. W., Turner, D. R., Wallace, K. J. (2007) Core concepts in supramolecular chemistry and nanochemistry. John Wiley & Sons, Ltd. J. Am. Chem. Soc. 129(46): 14524 https://doi.org/10.1021/ja0769853

Steed, J. W., Atwood, J. L. & Gale, P. A. (2012) Definition and emergence of supramolecular chemistry adapted in part from supramolecular chemistry (2nd Ed.). Wiley: Chichester, 2009. https://doi.org/10.1002/9780470661345.SMC002

Steed, J. W. & Atwood, J. L. (2022). Supramolecular chemistry (3rd Ed.). Wiley & Sons Ltd. ISBN: 978-1-119-58251-9

Sun, R. B., Zhou, A. G., Li, X. & Yu, H. Z. (2021) Development and application of mobile apps for molecular sensing: a review. ACS Sensors 6(5): 1731–1744. https://doi.org/10.1021/acssensors.1c00512

Tjandra, A. D., Chang, J. Y. H., Ladame, S. & Chandrawati, R. (2020) Optical sensors. In Bioengineering Innovative Solutions for Cancer (pp. 23-45). Academic Press. https://doi.org/10.1016/B978-0-12-813886-1.00003-6

Tromans, R. A., Carter, T. S., Chabanne, L., Crump, M. P., Li, H., Matlock, J. V., Orchard, M. G. & Davis, A. P. (2019) A biomimetic receptor for glucose. Nat. Chem. 11(1): 52–56. https://doi.org/10.1038/s41557-018-0155-z

Turkington, J. R., Bailey, P. J., Love, J. B., Wilson, A. M. & Tasker, P. A. (2013) Exploiting outer-sphere interactions to enhance metal recovery by solvent extraction. Chem. Commun. 49(19): 1891-1899. https://doi.org/10.1039/C2CC37874D

Tusa, J. K. & He, H. (2005) Critical care analyzer with fluorescent optical chemosensors for blood analytes. J. Mater. Chem. 15(27-28): 2640-2647. https://doi.org/10.1039/B503172A

Uekama, K., Fujinaga, T., Hirayama, F., Otagiri, M., Yamasaki, M., Seo, H., Hashimoto, T. & Tsuruoka, M. (1983) Improvement of the oral bioavailability of digitalis glycosides by cyclodextrin complexation. J. Pharm. Sci. 72(11): 1338-1341. https://doi.org/10.1002/jps.2600721125

Van Leeuwen, P. W. N. M. & Raynal, M. (2022). Supramolecular catalysis: New Directions and Developments. John Wiley & Sons. https://doi.org/10.1002/9783527832033

Wang, B. & Anslyn, E. V. (2011) Chemosensors: principles, strategies, and applications. Wiley & Sons. https://doi.org/10.1002/9781118019580

Williams, G.T., Haynes, C. J. E., Fares, M., Caltagirone, C., Histock, J. R. & Gale, P. A. (2021) Advances in applied supramolecular chemistry. Chem. Soc. Rev. 50(4): 2737-2763. https://doi.org/10.1039/D0CS00948B

Wolfbeis, O. S. (2013) Editorial: probes, sensors, and labels: why is real progress slow? Angew. Chem. Int. Ed. 52(38): 9864-9865. https://doi.org/10.1002/ANIE.201305915

Wongkongk, J., Miyahara, T., Ojida, A. & Hamachi, I. (2006) Label-free, real-time glycosyltransferase assay based on a fluorescent artificial chemosensor. Angew. Chem. Int. Ed. 45(4): 665-668. https://doi.org/10.1002/anie.200503107

Wu, D., Sedgwick, A. C., Gunnlaugsson, T., Akkaya, E. U., Yoon, J. & James, T. D. (2017) Fluorescent chemosensors: the past, present, and future. Chem. Soc. Rev. 46(23): 7105-7123. https://doi.org/10.1039/C7CS00240H

Yatsimirsky, A. K. (2005). Metal ion catalysis in acyl and phosphoryl transfer: Transition states as ligands. Coordination Chemistry Reviews 249(17–18): 1997–2011. https://doi.org/10.1016/j.ccr.2005.04.016

Zavala-Contreras, B., Santacruz-Ortega, H., Orozco-Valencia, A. U., Inoue, M., Ochoa Lara, K. & Navarro, R. E. (2021) Optical anion receptors with urea/thiourea subunits on a TentaGel support. ACS Omega 6(14): 9381–9390. https://doi.org/10.1021/ACSOMEGA.0C05554

Zhang, J. X. J. & Hoshino, K. (2018) Molecular sensors and nanodevices: principles, designs and applications in biomedical engineering (2nd Ed.). Academic Press. https://doi.org/10.1016/C2017-0-02290-5

Zhao, Y., Zou, J., Song, Y., Peng, J., Wang, Y. & Bi, Y. (2020) A novel label-free fluorescence assay for dipeptidyl peptidase 4 activity detection based on supramolecular self-assembly. Chem. Commun. 56 (11): 1629-1632. https://doi.org/10.1039/C9CC09053C

Zheng, Z., Geng, W. C., Li, H. B. & Guo, D. S. (2020) Sensitive fluorescence detection of saliva pepsin by a supramolecular tandem assay enables the diagnosis of gastroesophageal reflux disease. Supramol. Chem. 33 (4): 80-87. https://doi.org/10.1080/10610278.2020.1857762

Publicado
2023-12-07
Cómo citar
Gomez Vega, P. J., Ochoa Lara, K. L., Corona Martínez, D. O., Juarez, J., & Reyes Márquez, V. (2023). Materiales supramoleculares: quimiosensores y otras aplicaciones prácticas: Supramolecular materials: Chemosensors and other practical applications . TECNOCIENCIA Chihuahua, 17(4), e1316. https://doi.org/10.54167/tch.v17i4.1316