Nanopartículas basadas en Quitosano con potenciales aplicaciones en biomedicina

Chitosan Based Nanoparticles with Promising Applications in Biomedicine

  • Mario Almada UNISON. Dpto. de Ciencias Químico-Biológicas y Agropecuarias
  • Mariangel Luna UNISON. Dpto de Física. Posgrado en Nanotecnología
  • Marisol Gastelum-Cabrera UNISON. Dpto de Física. Posgrado en Nanotecnología https://orcid.org/0000-0002-0212-6155
  • Osvaldo Beltrán UNISON. Dpto. de Física. Posgrado en Nanotecnología
  • Patricia D. Martínez-Flores UNISON. Dpto. de Física. Posgrado en Nanotecnología
  • Joselyn A. García-Mar UNISON. Dpto. de Física. Posgrado en Nanotecnología
  • Antonio Topete Universidad de Guadalajara https://orcid.org/0000-0002-5448-0295
  • Marco A. López-Mata UNISON. Dpto. de Ciencias de la Salud https://orcid.org/0000-0002-2805-6714
  • Viviana Reyes-Márquez UNISON. Dpto. de Ciencias Químico-Biológicas https://orcid.org/0000-0002-6646-0224
  • María G. Burboa UNISON. Dpto. de Investigaciones Científicas y Tecnológicas
  • Miguel A. Valdés UNISON. Dpto. de Física
  • Josue Juarez UNISON. Dpto. de Física https://orcid.org/0000-0003-1801-0349
Palabras clave: nanotecnología, biomateriales, quitosano, nanopartículas

Resumen

La nanotecnología es una herramienta emergente utilizada en el desarrollo de novedosos biomateriales de escala nanométrica. Lípidos, proteínas y polisacáridos son algunos de los materiales de origen natural más utilizados para la fabricación de nanomateriales para la entrega controlada de fármacos. De estos, los polisacáridos, como quitosano, almidón, pectina, alginato, entre otros, han sido ampliamente utilizados con estos propósitos. En esta breve revisión, se mostrarán algunos reportes sobre la fabricación de nanopartículas basadas en quitosano, para el transporte y liberación de componentes bioactivos.

DOI: https://doi.org/10.54167/tch.v17i4.1293

Citas

Aibani, N., Rai, R., Patel, P., Cuddihy, G. & Wasan, E. K. (2021). Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics 13(10): 1686. https://doi.org/10.3390/pharmaceutics13101686

Almada, M., Burboa, M. G., Robles, E., Gutiérrez, L. E., Valdés, M. A. & Juárez, J. (2014). Interaction and cytotoxic effects of hydrophobized chitosan nanoparticles on MDA-MB-231, HeLa and Arpe-19 cell lines. Current Topics in Medicinal Chemistry 14(6): 692-701. https://doi.org/10.2174/1568026614666140118214802

Almada, M., Leal-Martínez, B. H., Hassan, N., Kogan, M. J., Burboa, M. G., Topete, A., Valdez, M. A. & Juárez, J. (2017). Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol). Materials Science and Engineering C 77:583-593. https://doi.org/10.1016/j.msec.2017.03.218

Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F. & Alcudia, A. (2020). Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 10(7): 1403. https://doi.org/10.3390/nano10071403

Calvo, P., Remuñán-López, C., Vila-Jato, J. L. & Alonso, M. J. (1998). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science 63(1): 125–132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1%3C125::AID-APP13%3E3.0.CO;2-4

Chen, Q., Qi, Y., Jiang, Y., Quan, W., Luo, H., Wu, K., Li, S. & Ouyang, Q. (2022). Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Marine Drugs 20(8): 536. https://doi.org/10.3390/md20080536

Crognale, S., Russo, C., Petruccioli, M. & D’annibale, A. (2022). Chitosan Production by Fungi: Current State of Knowledge, Future Opportunities and Constraints. Fermentation 8(2): 76. https://doi.org/10.3390/fermentation8020076

Di Martino, A. & Sedlarik, V. (2014). Amphiphilic chitosan-grafted-functionalized polylactic acid based nanoparticles as a delivery system for doxorubicin and temozolomide co-therapy. International Journal of Pharmaceutics 474(1–2): 134-145. https://doi.org/10.1016/j.ijpharm.2014.08.014

Duan, R., Zhou, Z., Su, G., Liu, L., Guan, M., Du, B. & Zhang, Q. (2014). Chitosan-coated gold nanorods for cancer therapy combining chemical and photothermal effects. Macromolecular Bioscience 14(8): 1160-1169. https://doi.org/10.1002/mabi.201300563

Encinas-Basurto, D., Ibarra, J., Juarez, J., Burboa, M. G., Barbosa, S., Taboada, P., Troncoso-Rojas, R. & Valdez, M. A. (2017). Poly(lactic-co-glycolic acid) nanoparticles for sustained release of allyl isothiocyanate: characterization, in vitro release and biological activity. Journal of Microencapsulation 34(3): 231–242. https://doi.org/10.1080/02652048.2017.1323037

Fernández-Urrusuno, R., Calvo, P., Remuñán-López, C., Vila-Jato, J. L. & Alonso, M. J. (1999). Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharmaceutical Research 16: 1576-1581. https://doi.org/10.1023/A:1018908705446

Frank, L. A., Onzi, G. R., Morawski, A. S., Pohlmann, A. R., Guterres, S. S. & Contri, R. V. (2020). Chitosan as a coating material for nanoparticles intended for biomedical applications. Reactive and Functional Polymers 147: 104459. https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2019.104459

Gagliardi, A., Giuliano, E., Venkateswararao, E., Fresta, M., Bulotta, S., Awasthi, V. & Cosco, D. (2021). Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Frontiers in Pharmacology 12: 601626. https://doi.org/10.3389/fphar.2021.601626

Hadidi, M., Pouramin, S., Adinepour, F., Haghani, S. & Jafari, S. M. (2020). Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydrate Polymers 236: 116075. https://doi.org/10.1016/j.carbpol.2020.116075

Ibrahim, A. M., Alzahrani, H. A. A., Abd El-Latif, M. M. & Selim, M. M. (2019). Influence of different stabilizers on the morphology of gold nanoparticles. Bulletin of the National Research Centre 43(1): 33. https://doi.org/10.1186/s42269-019-0070-5

Jamkhande, P. G., Ghule, N. W., Bamer, A. H. & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology 53: 101174. https://doi.org/10.1016/j.jddst.2019.101174

Janes, K. A., Fresneau, M. P., Marazuela, A., Fabra, A. & Alonso, M. J. (2001). Chitosan nanoparticles as delivery systems for doxorubicin. Journal of Controlled Release 73(2–3): 255-267. https://doi.org/10.1016/S0168-3659(01)00294-2

Katas, H., Moden, N. Z., Lim, C. S., Celesistinus, T., Chan, J. Y., Ganasan, P. & Suleman Ismail Abdalla, S. (2018). Biosynthesis and Potential Applications of Silver and Gold Nanoparticles and Their Chitosan-Based Nanocomposites in Nanomedicine. Journal of Nanotechnology 1-13: 290705. https://doi.org/10.1155/2018/4290705

Kim, Y., Zharkinbekov, Z., Raziyeva, K., Tabyldiyeva, L., Berikova, K., Zhumagul, D., Temirkhanova, K. & Saparov, A. (2023). Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 15(3): 807. https://doi.org/10.3390/pharmaceutics15030807

Lebrilla, C. B., Liu, J., Widmalm, G. & Prestegard, J. H. (2022). Oligosaccharides and Polysaccharides. In: Varki A, Cummings RD, Esko JD, et al., (Ed.). Essentials of Glycobiology. (4th Edition). Cold Spring Harbor Laboratory Press(NY): Cold Spring Harbor Laboratory Press. Chapter 3. https://www.ncbi.nlm.nih.gov/books/NBK579972/#top

Luna, M., Beltran, O., Encinas-Basurto, D. A., Ballesteros-Monrreal, M. G., Topete, A., Hassan, N., López-Mata, M. A., Reyes-Márquez, V., Valdez, M. A. & Juarez, J. (2022). High antibacterial performance of hydrophobic chitosan-based nanoparticles loaded with Carvacrol. Colloids and Surfaces B: Biointerfaces 209 (Part 1): 112191. https://doi.org/10.1016/j.colsurfb.2021.112191

Mattu, C., Li, R. & Ciardelli, G. (2013). Chitosan nanoparticles as therapeutic protein nanocarriers: The effect of ph on particle formation and encapsulation efficiency. Polymer Composites 34(9): 1538-1545. Special Issue: 6th Conference on the Times of Polymers & Composites (TOP) held at Ischia Italy June 10–14, 2012. https://doi.org/10.1002/pc.22415

Modi, S., Prajapati, R., Inwati, G. K., Deepa, N., Tirth, V., Yadav, V. K., Yadav, K. K., Islam, S., Gupta, P., Kim, D. H. & Jeon, B. H. (2022). Recent trends in fascinating applications of nanotechnology in allied health sciences. Crystals 12(1):39. https://doi.org/10.3390/cryst12010039

Mohammed, A. S. A., Naveed, M. & Jost, N. (2021). Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). Journal of Polymers and the Environment 29 (8): 2359–2371. https://doi.org/10.1007/s10924-021-02052-2

Mondéjar-López, M., Rubio-Moraga, A., López-Jimenez, A. J., García Martínez, J. C., Ahrazem, O., Gómez-Gómez, L. & Niza, E. (2022). Chitosan nanoparticles loaded with garlic essential oil: A new alternative to tebuconazole as seed dressing agent. Carbohydrate Polymers 277: 118815. https://doi.org/10.1016/j.carbpol.2021.118815

Muir, V. G. & Burdick, J. A. (2021). Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews 121(18): 10908–10949 https://doi.org/10.1021/acs.chemrev.0c00923

Pellis, A., Guebitz, G. M. & Nyanhongo, G. S. (2022). Chitosan: Sources, Processing and Modification Techniques. Gels 8 (7): 393. https://doi.org/10.3390/gels8070393

Ribeiro, J. C. V., Vieira, R. S., Melo, I. M., Araújo, V. M. A. & Lima, V. (2017). Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. Scientific World Journal 2017: 8639898. Hindawi Limited. https://doi.org/10.1155/2017/8639898

Riofrio, A., Alcivar, T. & Baykara, H. (2021). Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador: A Robust Investment and Life Cycle Analysis. ACS Omega 6(36): 23038–23051. https://doi.org/10.1021/acsomega.1c01672

Seidi, F., Khodadadi Yazdi, M., Jouyandeh, M., Dominic, M., Naeim, H., Nezhad, M. N., Bagheri, B., Habibzadeh, S., Zarrintaj, P., Saeb, M. R. & Mozafari, M. (2021). Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules 183: 1818-1850. https://doi.org/10.1016/j.ijbiomac.2021.05.003

Sharifi-Rad, J., Quispe, C., Butnariu, M., Rotariu, L. S., Sytar, O., Sestito, S., Rapposelli, S., Akram, M., Iqbal, M., Krishna, A., Kumar, N. V. A., Braga, S. S., Cardoso, S. M., Jafernik, K., Ekiert, H., Cruz-Martins, N., Szopa, A., Villagran, M., Mardones, L., … Calina, D. (2021). Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell International 21: 318. https://doi.org/10.1186/s12935-021-02025-4

Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. (2021). Lipid Nanoparticles from Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 15 (11): 16982–17015. https://doi.org/10.1021/acsnano.1c04996

Tian, Y., Wu, D., Wu, D., Cui, Y., Ren, G., Wang, Y., Wang, J. & Peng, C. (2022). Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Frontiers in Bioengineering and Biotechnology 10: 2022. https://doi.org/10.3389/fbioe.2022.899760

Verma, D. K., Malik, R., Meena, J. & Rameshwari, R. (2021). Synthesis, characterization and applications of chitosan based metallic nanoparticles: A review. Journal of Applied and Natural Science 13(2): 544-551. https://doi.org/10.31018/jans.v13i2.2635

Vodyashkin, A. A., Kezimana, P., Vetcher, A. A. & Stanishevskiy, Y. M. (2022). Biopolymeric Nanoparticles–Multifunctional Materials of the Future. Polymers 14 (11): 2287. https://doi.org/10.3390/polym14112287

Yadav, P. & Yadav, A. B. (2021). Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system. Future Journal of Pharmaceutical Sciences 7: 200. https://doi.org/10.1186/s43094-021-00345-w

Yanat, M. & Schroën, K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers 161: 104849. https://doi.org/10.1016/j.reactfunctpolym.2021.104849

Yang, H., Sun, A., Yang, J., Cheng, H., Yang, X., Chen, H., Huanfei, D. & Falahati, M. (2021). Development of doxorubicin-loaded chitosan–heparin nanoparticles with selective anticancer efficacy against gastric cancer cells in vitro through regulation of intrinsic apoptosis pathway. Arabian Journal of Chemistry 14 (8): 2021, 103266. https://doi.org/10.1016/j.arabjc.2021.103266

Zare, M., Samani, S. M. & Sobhani, Z. (2018). Enhanced intestinal permeation of doxorubicin using chitosan nanoparticles. Advanced Pharmaceutical Bulletin 8(3): 411-417. https://pubmed.ncbi.nlm.nih.gov/30276137/

Zheng, J., Cheng, X., Zhang, H., Bai, X., Ai, R., Shao, L. & Wang, J. (2021). Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews 121 (21): 13342–13453. https://doi.org/10.1021/acs.chemrev.1c00422

Publicado
2023-11-29
Cómo citar
Almada, M., Luna, M., Gastelum Cabrera, M., Beltrán, O., Martínez Flores, P. D., García Mar, J. A., Topete, A., López Mata, M. A., Reyes Márquez, V., Burboa, M. G., Valdés, M. A., & Juárez-Onofre, J. E. (2023). Nanopartículas basadas en Quitosano con potenciales aplicaciones en biomedicina: Chitosan Based Nanoparticles with Promising Applications in Biomedicine. TECNOCIENCIA Chihuahua, 17(4), e1293. https://doi.org/10.54167/tch.v17i4.1293