Higroexpansión, higrocontracción y sus relaciones de anisotropía de ocho maderas mexicanas

Hygroexpansion, hygrocontraction and their anisotropy relationships of eight mexican wood

Palabras clave: coeficiente de higroexpansión, coeficiente de higrocontracción, pruebas de higroscopía, correlaciones estadísticas

Resumen

El objetivo de la investigación fue determinar los coeficientes de higroexpansión, de higrocontracción y sus relaciones de anisotropía de ocho maderas mexicanas: Cupressus lindleyi, Cedrela odorata, Swietenia macrophylla, Tabebuia donnell-smithii, Fraxinus uhdei, Fagus mexicana, Dalbergia palo-escrito y Guazuma ulmifolia. Se realizaron pruebas de higroscopía con un procedimiento de humidificación y secado de probetas de pequeñas dimensiones. Las magnitudes de las higroexpansiones e higrocontracciones son similares a las de otras especies mexicanas reportadas en la literatura. Los coeficientes denotan un carácter anisotrópico en las direcciones radial y tangencial. La densidad de la madera es un buen predictor de los coeficientes. Sin embargo, las correlaciones de las relaciones de anisotropía son diferentes a las reportadas en trabajos anteriores.

DOI: https://doi.org/10.54167/tecnociencia.v16i1.869

Citas

Abdelmohsen, S., Adriaenssens, S., El-Dabaa, R., Gabriele, S., Olivieri, L., & Teresi, L. (2019). A multi-physics approach for modeling hygroscopic behavior in wood low-tech architectural adaptive systems. Computer-Aided Design, 106, 43-53. https://doi.org/10.1016/j.cad.2018.07.005

Almeida, G., Huber, & F., Perré, P. (2014). Free shrinkage of wood determined at the cellular level using an environmental scanning electron microscope. Maderas. Ciencia y tecnología, 16(2), 187-198. https://bit.ly/3vlkidj

American Society for Testing and Materials. (2013). ASTM D4446/D4446M-13. Standard Test Method for Anti-Swelling Effectiveness of Water-Repellent Formulations and Differential Swelling of Untreated Wood When Exposed to Liquid Water Environments West Conshohocken: ASTM. https://bit.ly/3vluUsv

American Society for Testing and Materials. (2014). ASTM D143-14. Standard Test Methods for Small Clear Specimens of Timber. West Conshohocken: American Society for Testing and Materials.

Arzola-Villegas, X., Lakes, R., Plaza, N. Z., & Jakes, J. E. (2019). Wood Moisture-Induced Swelling at the Cellular Scale—Ab Intra. Forests, 10, 996. https://bit.ly/3kj7j5q

Ávila, L. E., & Herrera, M. A. (2012). Efecto de los extraíbles en tres propiedades físicas de la madera de Enterolobium cyclocarpum procedente de Michoacán, México. Bosque, 33(2), 227-232. https://dx.doi.org/10.4067/S0717-92002012000200013

Badel, E., Bakour, R., & Perré, P. (2006). Investigation of the relationships between anatomical pattern, density and local swelling of oak wood. IAWA Journal, 27(1), 55-71. https://bit.ly/3LmEj8Y

Bárcenas Pazos, G. M. (2020). Banco de información sobre características tecnológicas de maderas mexicanas. México: Comisión nacional para el conocimiento y uso de la biodiversidad (CONABIO). https://bit.ly/3KmWIRx

Berry, S. L., & Roderick, M. L. (2005). Plant–water relations and the fibre saturation point. New Phytologist, 168, 25-37. https://doi.org/10.1111/j.1469-8137.2005.01528.x

Borgström, E. (Editor). (2016). Design of timber structures. Structural aspects of timber construction. Volume 1. Stockholm: Swedish Forest Industries Federation.

Borja de la Rosa, A., Machuca, R., Fuentes Salinas, M., Ayerde Lozada, D., Fuentes López, M., & Quintero Alcantar, A. (2010). Caracterización tecnológica de la madera de Juniperus flaccida var. poblana martínez. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 16(2), 261-280. https://doi.org/10.5154/r.rchscfa.2010.09.083

Carmeliet, J., Chen, M., & Derome, M. (2018). Sorption hysteresis in wood and its coupling to swelling: a new modelling approach. Proceedings of the 7th International Building Physics Conference, IBPC2018. Syracuse: Curran Associates. pp. 343-348. http://dx.doi.org/10.14305/ibpc.2018.be-9.04

Chiniforush, A. A., Akbarnezhad, A., Valipour, H., & Malekmohammadi, S. (2019). Moisture and temperature induced swelling/shrinkage of softwood and hardwood glulam and LVL: An experimental study. Construction and Building Materials, 207, 70-83. https://doi.org/10.1016/j.conbuildmat.2019.02.114

De Almeida, T., De Almeida, D. H., De Araujo, V. A., Da Silva,S. A. M., Christoforo, A. L., & Lahr, F. A. R. (2017). Density as Estimator of Dimensional Stability Quantities of Brazilian Tropical Woods. BioResources, 12(3), 6579-6590. https://doi.org/10.15376/biores.12.3.6579-6590

Derome, D., Griffa, M., Koebel, M., & Carmeliet, J. (2011). Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. Journal of Structural Biology, 173, 180-190. https://doi.org/10.1016/j.jsb.2010.08.011

Derome, D., Rafsanjani, A., Hering, S., Dressler, M., Patera, A., Lanvermann, C., Sedighi-Gilani, M., Wittel, F. K., Niemz, P., & Carmeliet, J. (2013). The role of water in the behavior of wood. Journal of Building Physics, 36(4), 398-421. https://doi.org/10.1177/1744259112473926

Derome, D., Zhang, C., Chen, M., & Carmeliet, J. (2018). Understanding swelling of wood through multiscale modeling. Proceedings of the 7th International Building Physics Conference, IBPC2018. Syracuse: USA. pp. 335-360. http://dx.doi.org/10.14305/ibpc.2018.be-9.06

Dickson, A., & Dawson, B. (2020). Using Cell Cross-section Dimensions and Digital Image Correlation to Evaluate Drying Shrinkage and Collapse in Eucalyptus Nitens Wood. BioResources, 15(3), 6149-6164. http://dx.doi.org/10.15376/biores.15.3.6149-6164

Dubey, M. K., Pang, S., & Walker, J. (2011). Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiate. European Journal of Wood and Wood Products, 69(2), 255-262. http://dx.doi.org/10.1007/s00107-010-0431-0

El-Dabaa, R., & Abdelmoshen, S. (2019). HMTM: Hygromorphic-Thermobimetal Composites as a Novel Approach to Enhance Passive Actuation of Adaptive Façades. 18th International Conference, CAAD Futures 2019, Proceedings. Daejeon, Korea: Springer. 567- 577. https://bit.ly/3EQ7w9P

Engelund, E. T., Thygesen, L. G., Svensson, S., & Hill, C. A. S. (2013). A critical discussion of the physics of wood-water interactions. Wood Science and Technology, 47(1), 141-161. https://doi.org/10.1007/s00226-012-0514-7

Fu, Z., Zhou, Y., Gao, X., Liu, H., & Zhou, F. (2019). Changes of water related properties in radiata pine wood due to heat treatment. Construction and Building Materials, 227, 116692. https://doi.org/10.1016/j.conbuildmat.2019.116692

Fuentes Salinas, M. (2000). Estimación del Punto de Saturación de la Fibra (PSF) de las maderas. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 6(1), 79-81. https://bit.ly/36W4O68

García Esteban, L. G., Gril, J., De Palacios, P., & Guindeo Casasús, A. (2005). Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Annals of Forest Science, 62(3)275-284. http://dx.doi.org/10.1051/forest:2005020

Grönquist, P., Wood, D., Hassani, M. M., Wittel, F. K., Menges, A., & Rüggeberg, M. (2019). Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 5, eaax 1311. https://doi.org/10.1126/sciadv.aax1311

Haag, V., Koch, G., Melcher, E., & Welling, J. (2020). Characterization of the wood properties of Cedrelinga cateniformis as substitute for timbers used for window manufacturing and outdoor applications. Maderas. Ciencia y tecnología, 22(1), 23-36. http://dx.doi.org/10.4067/S0718-221X2020005000103

Hanhijärvi, A., Ranta-Maunus, A., & Turk, G. (2005). Potential of strength grading of timber with combined measurement techniques. Report of the Combigrade-project - phase 1. VTT Technical Research Centre of Finland. Espoo: VTT Publications No. 568. https://bit.ly/3LpGW9M

Hansmann, C., Konnerth, J., & Rosner, S. (2012). Digital image analysis of radial shrinkage of fresh spruce (Picea abies L.) wood. Wood Material Science & Engineering, 6(1-2), 2-6. https://doi.org/10.1080/17480272.2010.515032

Hassankhani, M., Kord, B. & Pourpasha, M. M. (2015). Empirical statistical model for predicting wood properties of Paulownia fortunie. Part 1: physical and biometrical properties. Maderas. Ciencia y tecnología, 17(4), 919-930. http://www.redalyc.org/articulo.oa?id=48543004020

Hering, S., Keunecke, D. & Niemz, P. (2012). Moisture-dependent orthotropic elasticity of beech wood. Wood Science and Technology, 46(5), 927-938. https://doi.org/10.1007/s00226-011-0449-4

Hernández, R. E. (2007a). Swelling properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood and Fiber Science, 39(1), 146-158. https://wfs.swst.org/index.php/wfs/article/view/203

Hernández, R. E. (2007b). Effects of extraneous substances, wood density and interlocked grain on fiber saturation point of hardwoods. Wood Material Science and Engineering, 2(1), 45-53. https://doi.org/10.1080/17480270701538425

Huda, A.S.M., Koubaa, A., Cloutier, A., Hernández, R., Périnet, P. & Fortin, Y. (2018). Phenotypic and Genotypic Correlations for Wood Properties of Hybrid Poplar Clones of Southern Quebec. Forests, 9(3), 140-156. https://doi.org/10.3390/f9030140

International Organization for Standardization. (2016a). ISO 13061-13:2016. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 13: Determination of radial and tangential shrinkage. Geneva: International Organization for Standardization.

International Organization for Standardization. (2016b). ISO 13061-14:2016. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 14: Determination of volumetric shrinkage. Geneva: International Organization for Standardization.

International Organization for Standardization. (2017a). ISO 13061-15:2017. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 15: Determination of radial and tangential swelling. Geneva: International Organization for Standardization.

International Organization for Standardization. (2017b). ISO 13061-16:2017. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 16: Determination of volumetric swelling. Geneva: International Organization for Standardization.

Ištok, I., Sedlar, T., Šefc, B., Sinkovi, T., & Perkovi, T. (2016). Physical Properties of Wood in Poplar Clones ’I-214’ and ’S1-8’. Drvna Industrija, 67(2), 163-170. https://bit.ly/399K5wf

Jacob, M., Harrington, J., & Robinson, B. (2018). The Structural Use of Timber. Handbook for Eurocode 5: Part 1-1. COFORD, Dublin: Department of Agriculture, Food and the Marine. https://bit.ly/3vkr82v

Jankowska, A., Drożdżek, M., Sarnowski, P., & Horodeński, J. (2017). Effect of Extractives on the Equilibrium Moisture Content and Shrinkage of Selected Tropical Wood Species. Bioresources, 12(1), 597-697. https://doi.org/10.15376/biores.12.1.597-607

Koman, S., & Feher, S. (2015). Basic density of hardwoods depending on age and site. Wood Research, 60(6), 907-912. http://www.centrumdp.sk/wr/201506/07.pdf

LeDuigou, A., Keryvin, V., Beaugrand, J., Pernes, M., Scarpa, F., & Castro, M. (2019). Humidity responsive actuation of bioinspired hygromorph biocomposites (HBC) for adaptive structures. Composites Part A: Applied Science and Manufacturing, 116, 36-45. https://doi.org/10.1016/j.compositesa.2018.10.018

Lesar, B., Straže, A., & Humar, M., (2011). Sorption Properties of Wood Impregnated with Aqueous Solution of Boric Acid and Montan Wax Emulsion. Journal of Applied Polymer Science, 120, 1337-1345. https://doi.org/10.1002/app.33196

Liu, M., Xu, G., Wang, J., Wu, Z., Lv, J., & Xu, W. (2020). Effects of Shellac Treatment on Wood Hygroscopicity, Dimensional Stability and Thermostability. Coatings, 10, 881. https://doi.org/10.3390/coatings10090881

Machuca Velasco, R., Borja de la Rosa, A., Corona Ambriz, A., Zaragoza Hernández, I., Arreola Avila, J. G. & Jiménez Machorro, J. (2017). Xilotecnia of the wood of Acacia schaffneri from the State of Hidalgo, Mexico. Maderas. Ciencia y tecnología, 19(3), 293-308. http://dx.doi.org/10.4067/S0718-221X2017005000025

Nopens, M., Riegler, M., Hansmann, C., & Krause, A. (2019). Simultaneous change of wood mass and dimension caused by moisture dynamics. Scientific Reports, 9, 10309. https://doi.org/10.1038/s41598-019-46381-8

O´Leary, P, & Hodges, P. A. (2001). The relationship between full penetration uptake and swelling of different fluids. Wood Science and Technology, 35(3), 217-227. https://doi.org/10.1007/s002260100096

Pereira Acosta, A., Römer Schulz, H. R., Techera Barbosa, K., Spiering Zanol, G., Gallio, E., de Avila Delucis, R., & Gatto, D. A. (2020). Dimensional stability and colour responses of Pinus elliottii wood subjected to furfurylation treatments. Maderas. Ciencia y tecnología, 22(3), 303-310. http://dx.doi.org/10.4067/S0718-221X2020005000305

Romagnoli, M., Cavalli, D., & Spina, S. (2014). Wood Quality of Chestnut: Relationship between Ring Width, Specific Gravity, and Physical and Mechanical Properties. BioResouces, 9(1), 1132-1147. https://bit.ly/3vR7SZy

Rowell, R. M. (2007). Chemical Modification of Wood. In: Handbook of Engineering Biopolymers. Homopolymers, Blends, and Composites. Fakirov, S., & Bhattacharyya, D. (Editors). pp: 673-691. https://bit.ly/38tpkvc

Sargent, R. (2019). Evaluating dimensional stability in solid wood: a review of current practice. Journal of Wood Science, 65, 36-47. https://doi.org/10.1186/s10086-019-1817-1

Shukla, S. R., & Kandem, D. P. (2010). Dimensional stability of nine tropical hardwoods from Cameroon. Journal of Tropical Forest Science, 22(4), 389-396. https://bit.ly/3LmMbqJ

Silva Guzmán, J. A., Fuentes Talavera, F. J., Rodríguez Anda R., Torres Andrade, P. A., Lomelí Ramírez, M. A., Ramos Quirarte, J., Waitkus, C., & Richter, H. G. (2010). Fichas de propiedades tecnológicas y usos de maderas nativas de México e importadas. México: Comisión Nacional Forestal.

Sotayo, A., Bradley, D.F., Bather, M., Sareh, P., Oudjene, M., El-houjeyri, I., Harte, A., Mehra, S., O’Ceallaigh, C., Haller, P., Namari, S., Makradi, A., Belouettar, S., Bouhala, L., Deneufbourg, F., & Guan, Z. (2020). Review of State of the Art of Dowel Laminated Timber Members and Densified Wood Materials as Sustainable Engineered Wood Products for Construction and Building Applications. Developments in the Built Environment, 1, 100004. https://doi.org/10.1016/j.dibe.2019.100004

Sotomayor Castellanos, J. R. (2016). Características higroscópicas de la madera de Pinus pseudostrobus. Investigación e Ingeniería de la Madera, 12(2), 4-33. https://bit.ly/3vvFv4t

Sotomayor Castellanos, J. R. (2017). Densificado higro-termo-mecánico de madera de Gyrocarpus americanus. Pruebas de higroscopía. Investigación e Ingeniería de la Madera, 13(2), 4-21. https://bit.ly/3vik8mR

Sotomayor Castellanos, J. R., & Ramírez Pérez, M. (2013). Densidad y características higroscópicas de maderas mexicanas. Base de datos y criterios de clasificación. Investigación e Ingeniería de la Madera, 9(3), 3-29. https://bit.ly/3ERYzNb

Sotomayor Castellanos, J. R., Ávila Calderón, L. E. A., & Fuentes Salinas, M. (2020a). Características higroscópicas de las maderas Spathodea campanulata, Fraxinus americana y Albizia plurijuga impregnadas con boro. Ciencia UNEMI, 14(35), 10-25. https://doi.org/10.29076/issn.2528-7737vol14iss35.2021pp10-25p

Sotomayor Castellanos, J. R., Tinoco Campos, L. M., & Raya González, D. (2020b). Características higroscópicas de la madera de Enterolobium cyclocarpum, Cupressus lindleyi y Cedrela odorata. Ciencia Nicolaita, 79(1), 75-93. https://doi.org/10.35830/cn.vi79.459

Tamarit Urias, J. C. & López Torres, J. L. (2007). Xilotecnología de los principales árboles tropicales de México. Puebla: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. https://bit.ly/3viEfRY

Tamarit Urias, J. C., & Fuentes Salinas, M. (2003). Parámetros de humedad de 63 maderas latifoliadas mexicanas en función de su densidad básica. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 9(2): 155-164. https://www.redalyc.org/articulo.oa?id=62913142008

Tippner, J., Hrivnák, J. & Kloiber, M. (2016). Experimental Evaluation of Mechanical Properties of Softwood using Acoustic Methods. BioResources, 11(1), 503-518. https://doi.org/10.15376/biores.11.1.503-518

Tiryaki, S., Bardak, S., Aydın, A., & Nemli, G. (2016). Analysis of volumetric swelling and shrinkage of heat treated woods: experimental and artificial neural network modeling approach. Maderas. Ciencia y tecnología, 18(3), 477-492. http://dx.doi.org/10.4067/S0718-221X2016005000043

Torelli, N., & Gorišek, Ž. (1995a). Mexican tropical hardwoods. Dimensional stability. Holz als Roh-und Werkstoff, 53, 277-280. https://doi.org/10.1007/s001070050090

Torelli, N., & Gorišek, Ž. (1995b). Mexican tropical hardwoods. Stepwise shrinkage and transverse shrinkage anisotropy. Holz als Roh-und Werkstoff, 53, 155-157. https://doi.org/10.1007/BF02716416

Wang, X., Sauter, U. H., & Ross, R. J. (Editors). (2019). Proceedings of the 21st International Nondestructive Testing and Evaluation of Wood Symposium. General Technical Report FPL-GTR-272. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 724 p. https://www.fs.usda.gov/treesearch/pubs/58690

Yao, X., Shen, C., & Xu, S. (2019). The effects of coupling/grafting modification of wood fiber on the dimensional stability, mechanical and thermal properties of high density polyethylene/wood fiber composites. Materials Research Express, 6(11), 115328. https://doi.org/10.1088/2053-1591/ab4a63

Publicado
2022-01-11
Cómo citar
Sotomayor Castellanos, J. R., Macedo Alquicira, I., & Mendoza González, E. (2022). Higroexpansión, higrocontracción y sus relaciones de anisotropía de ocho maderas mexicanas: Hygroexpansion, hygrocontraction and their anisotropy relationships of eight mexican wood. TECNOCIENCIA Chihuahua, 16(1), e 869. https://doi.org/10.54167/tecnociencia.v16i1.869