Compuestos organometálicos y de coordinación: Más que sólo una buena relación de metales de transición y moléculas orgánicas

Organometallic and coordination compounds: More than just a happy relationship between transition metals and organic molecules

Palabras clave: química organometálica, química de coordinación, catálisis, química bioinorgánica, química de materiales, química medicinal

Resumen

La química organometálica y de coordinación ha sido la inspiración de muchos científicos alrededor del mundo durante décadas debido a que las aplicaciones en las que los compuestos organometálicos y de coordinación han encontrado cabida, son diversos y estimulantes, tal es el caso de la catálisis, en la síntesis de metalodrogas o en la activación de moléculas pequeñas como CO2, H2, CH4 y N2. La síntesis de estos compuestos per se es interesante y el estudio de su reactividad ha permitido el desarrollo de procesos más eficientes y selectivos que permiten que nuestra vida cotidiana sea, no solamente más cómoda y duradera, sino más amigable con la naturaleza. En este artículo de revisión se presenta un panorama general de los avances que se han tenido a partir de la síntesis de los primeros compuestos inorgánicos hasta nuestros días y que han permitido el nacimiento de una plétora de subáreas que siguen siendo motivación para nosotros y para muchos grupos de investigación en el mundo. De igual manera se presentan las perspectivas a las que estas investigaciones apuntan a futuro con la finalidad de motivar al lector(a) a que siga por el estimulante camino del estudio de la química organometálica y de coordinación.

DOI: https://doi.org/10.54167/tecnociencia.v15i3.855

Citas

ACS. (2021, March 15). 12 Principles of Green Chemistry. American Chemical Society. https://bit.ly/3kKxiTF

Albrecht, M., & Hahn, E. (Eds.). (2012). Chemistry of Nanocontainers (319). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28059-7

Amabilino, D. B., & Gale, P. A. (2017). Supramolecular chemistry anniversary. Chem. Soc. Rev., 46(9), 2376–2377. https://doi.org/10.1039/C7CS90037F

Astruc, D. (2007). Organometallic Chemistry and Catalysis (2nd ed.). Springer.

Backman-Blanco, G., Valdés, H., Ramírez-Apan, M. T., Cano-Sanchez, P., Hernandez-Ortega, S., Orjuela, A. L., Alí-Torres, J., Flores-Gaspar, A., Reyes-Martínez, R., & Morales-Morales, D. (2020). Synthesis of Pt(II) complexes of the type [Pt(1,10-phenanthroline)(SArFn)2] (SArFn = SC6H3-3,4-F2; SC6F4-4-H; SC6F5). Preliminary evaluation of their in vitro anticancer activity. J. Inorg. Biochem., 211, 111206. https://doi.org/10.1016/j.jinorgbio.2020.111206

Basolo, F. (2002). From Coello to Inorganic Chemistry. Springer US. https://doi.org/10.1007/978-1-4615-0635-5

Bhardwaj, S. K., Bhardwaj, N., Kaur, R., Mehta, J., Sharma, A. L., Kim, K.-H., & Deep, A. (2018). An overview of different strategies to introduce conductivity in metal–organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A, 6(31), 14992–15009. https://doi.org/10.1039/C8TA04220A

Borys, A. (2020). The Schlenk Line Survival Guide. The Schlenk Line Survival Guide. https://schlenklinesurvivalguide.com/

Cabrera, D. V., & Labatut, R. A. (2021). Outlook and challenges for recovering energy and water from complex organic waste using hydrothermal liquefaction. Sustainable Energy Fuels, 5(8), 2201–2227. https://doi.org/10.1039/D0SE01857K

Casini, A., Vessières, A., & Meier-Menches, S. M. (Eds.). (2019). Metal-based anticancer agents. In Metallobiology, Royal Society of Chemistry. https://doi.org/10.1039/9781788016452-FP001.

Chalkley, M. J., Drover, M. W., & Peters, J. C. (2020). Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes. Chem. Rev., 120(12), 5582–5636. https://doi.org/10.1021/acs.chemrev.9b00638

Chen, K., & Arnold, F. H. (2020). Engineering new catalytic activities in enzymes. Nat. Catal., 3(3), 203–213. https://doi.org/10.1038/s41929-019-0385-5

Crumbliss, A. L., & Basolo, F. (1969). Monomeric Cobalt-Oxygen Complexes. Science, 164(3884), 1168–1170. https://doi.org/10.1126/science.164.3884.1168

Diercks, C. S., Kalmutzki, M. J., Diercks, N. J., & Yaghi, O. M. (2018). Conceptual Advances from Werner Complexes to Metal–Organic Frameworks. ACS Cent. Sci., 4(11), 1457–1464. https://doi.org/10.1021/acscentsci.8b00677

Dougan, S. J., Habtemariam, A., McHale, S. E., Parsons, S., & Sadler, P. J. (2008). Catalytic organometallic anticancer complexes. PNAS, 105(33), 11628–11633. https://doi.org/10.1073/pnas.0800076105

Espinal-Enríquez, J., Hernández-Lemus, E., Mejía, C., & Ruiz-Azuara, L. (2016). Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy. Front. Physiol., 6, 406. https://doi.org/10.3389/fphys.2015.00406.

Frei, A. (2020). Metal Complexes, an Untapped Source of Antibiotic Potential? Antibiotics, 9(2), 90. https://doi.org/10.3390/antibiotics9020090

Gabriel Flores-Rojas, G., González-Sebastián, L., Reyes-Martínez, R., Aguilar-Castillo, B. A., Hernández-Ortega, S., & Morales-Morales, D. (2020). Synthesis and characterization of Pd(II) complexes bearing NS, CS, SNS and SCS ligands. Evaluation of their microwave assisted catalytic activity in C-C coupling reactions. Polyhedron, 185, 114601. https://doi.org/10.1016/j.poly.2020.114601

Galluzzi, L., Vitale, I., Michels, J., Brenner, C., Szabadkai, G., Harel-Bellan, A., Castedo, M., & Kroemer, G. (2014). Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis., 5, e1257. https://doi.org/10.1038/cddis.2013.428

Hartinger, C. G., & Dyson, P. J. (2009). Bioorganometallic chemistry—From teaching paradigms to medicinal applications. Chem. Soc. Rev., 38(2), 391–401. https://doi.org/10.1039/B707077M

Hauer, B. (2020). Embracing Nature’s Catalysts: A Viewpoint on the Future of Biocatalysis. ACS Catal., 10(15), 8418–8427. https://doi.org/10.1021/acscatal.0c01708

Jia, C., Kitamura, T., & Fujiwara, Y. (2001). Catalytic Functionalization of Arenes and Alkanes via C−H Bond Activation. Acc. Chem. Res., 34(8), 633–639. https://doi.org/10.1021/ar000209h

Johnstone, T. C., Suntharalingam, K., & Lippard, S. J. (2016). The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev., 116(5), 3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597

Jörgensen, S. M. (1899). Zur Konstitution der Kobalt-, Chrom- und Rhodiumbasen. Z. Anorg. Chem., 19(1), 109–157. https://doi.org/10.1002/zaac.18990190113

Kealy, T. J., & Pauson, P. L. (1951). A New Type of Organo-Iron Compound. Nature, 168(4285), 1039–1040. https://doi.org/10.1038/1681039b0

Koumura, N., & Zijlstra, R. W. J. (1999). Light-driven monodirectional molecular rotor. Nature, 401(6749), 152–155. https://doi.org/10.1038/43646

Kovacic, P., & Osuna, J. A. (2000). Mechanisms of anti-cancer agents: Emphasis on oxidative stress and electron transfer. Curr. Pharm. Des., 6(3), 277–309. https://doi.org/10.2174/1381612003401046

Lehn, J.-M. (1988). Supramolecular chemistry. Scope and perspectives: Molecules-Supermolecules-Molecular devices. J. Incl. Phenom., 6(4), 351–396. https://doi.org/10.1007/BF00658981.

Lowe, M. (2004). Activated MR Contrast Agents. Curr. Pharm. Biotechnol., 5(6), 519–528. https://doi.org/10.2174/1389201043376562

Lunsford, J. H. (1995). The Catalytic Oxidative Coupling of Methane. Angew. Chem. Int. Ed., 34(9), 970–980. https://doi.org/10.1002/anie.199509701

Marion, P., Bernela, B., Piccirilli, A., Estrine, B., Patouillard, N., Guilbot, J., & Jérôme, F. (2017). Sustainable chemistry: How to produce better and more from less? Green Chem., 19(21), 4973–4989. https://doi.org/10.1039/C7GC02006F

Mendelsohn, L. N., MacNeil, C. S., Tian, L., Park, Y., Scholes, G. D., & Chirik, P. J. (2021). Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways. ACS Catal., 11(3), 1351–1360. https://doi.org/10.1021/acscatal.0c05136

Morales-Morales, D. (2004). Pincer Complexes: Applications in Catalysis. Rev. Soc. Quím. Méx., 48(4), 338–346.

Morales-Morales, D., Cramer, R. E., & Jensen, C. M. (2002). Enantioselective synthesis of platinum group metal complexes with the chiral PCP pincer ligand R,R-{C6H4-2,6-(CH2P*PhBut)2}. The crystal structure of R,R-PdCl{C6H3-2,6-(CH2P*PhBut)2}. J. Organomet. Chem., 654(1), 44–50. https://doi.org/10.1016/S0022-328X(02)01371-2

Morales-Morales, D., Grause, C., Kasaoka, K., Redón, R., Cramer, R. E., & Jensen, C. M. (2000). Highly efficient and regioselective production of trisubstituted alkenes through heck couplings catalyzed by a palladium phosphinito PCP pincer complex. Inorganica Chim. Acta, 300–302, 958–963. https://doi.org/10.1016/S0020-1693(99)00616-7

Morales-Morales, D., Redón, R., Wang, Z., Lee, D. W., Yung, C., Magnuson, K., & Jensen, C. M. (2001). Selective dehydrogenation of alcohols and diols catalyzed by a dihydrido iridium PCP pincer complex. Can. J. Chem., 79 (5), 823–829. https://doi.org/10.1139/v01-070

M. Siegbahn, P. E. (2019). The mechanism for nitrogenase including all steps. Phys. Chem. Chem. Phys., 21(28), 15747–15759. https://doi.org/10.1039/C9CP02073J

O’Leary, F., & Samman, S. (2010). Vitamin B12 in Health and Disease. Nutrients, 2(3), 299–316. https://doi.org/10.3390/nu2030299

Ortega-Gaxiola, J. I. (2020). Synthesis of Pd(II) complexes with P-N-OH ligands derived from 2-(diphenylphosphine)-benzaldehyde and various aminoalcohols and their catalytic evaluation on Suzuki-Miyaura couplings in aqueous media. Inorganica Chim. Acta, 504, 119460. https://doi.org/10.1016/j.ica.2020.119460

Qi, C., Wang, X., Chen, Z., Xiang, S., Wang, T., Feng, H.-T., & Tang, B. Z. (2021). Organometallic AIEgens for biological theranostics. Mater. Chem. Front., 5(8), 3281–3297. https://doi.org/10.1039/D0QM01130D

Rosenberg, B., Renshaw, E., Vancamp, L., Hartwick, J., & Drobnik, J. (1967). Platinum-Induced Filamentous Growth in Escherichia coli. J. Bacteriol., 93(2), 716–721. https://doi.org/10.1128/jb.93.2.716-721.1967

Sinha, N., & Hahn, F. E. (2017). Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands. Acc. Chem. Res., 50(9), 2167–2184. https://doi.org/10.1021/acs.accounts.7b00158

Valdez-Camacho, J. R., Pérez-Salgado, Y., Espinoza-Guillén, A., Gómez-Vidales, V., Alberto Tavira-Montalvan, C., Meneses-Acosta, A., Leyva, M. A., Vázquez-Ríos, M. G., Juaristi, E., Höpfl, H., Ruiz-Azuara, L., & Escalante, J. (2020). Synthesis, structural characterization and antiproliferative activity on MCF-7 and A549 tumor cell lines of [Cu(N-N)(β3-aminoacidate)]NO3 complexes (Casiopeínas®). Inorganica Chim. Acta, 506, 119542. https://doi.org/10.1016/j.ica.2020.119542

van Koten, G., & Gossage, R. A. (Eds.). (2016). The Privileged Pincer-Metal Platform: Coordination Chemistry & Applications, 54. Springer International Publishing. https://doi.org/10.1007/978-3-319-22927-0

Visbal, R., & Gimeno, M. C. (2014). N-heterocyclic carbene metal complexes: Photoluminescence and applications. Chem. Soc. Rev., 43(10), 3551–3574. https://doi.org/10.1039/C3CS60466G.

Werner, A. (1899). Beitrag zur Konstitution anorganischer Verbindungen. Z. Anorg. Chem., 19(1), 158–178. https://doi.org/10.1002/zaac.18990190114

Zhang, P., & Sadler, P. J. (2017a). Redox-Active Metal Complexes for Anticancer Therapy: Redox-Active Metal Complexes for Anticancer Therapy. Eur. J. Inorg. Chem., 2017(12), 1541–1548. https://doi.org/10.1002/ejic.201600908

Zhang, P., & Sadler, P. J. (2017b). Advances in the design of organometallic anticancer complexes. J. Organomet. Chem., 839, 5–14. https://doi.org/10.1016/j.jorganchem.2017.03.038

Zou, S.-J., Shen, Y., Xie, F.-M., Chen, J.-D., Li, Y.-Q., & Tang, J.-X. (2020). Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Mater. Chem. Front., 4(3), 788–820. https://doi.org/10.1039/C9QM00716D

Publicado
2021-12-22
Cómo citar
Osorio-Yáñez, R. N., & Morales Morales, D. (2021). Compuestos organometálicos y de coordinación: Más que sólo una buena relación de metales de transición y moléculas orgánicas: Organometallic and coordination compounds: More than just a happy relationship between transition metals and organic molecules. TECNOCIENCIA Chihuahua, 15(3), e 855. https://doi.org/10.54167/tecnociencia.v15i3.855