Reacciones de trifluorometilación catalizadas por metales de transición

Transition Metal Catalyzed Trifluoromethylation Reactions

Palabras clave: trifluorometilación, metales de transición, catalizador

Resumen

Las reacciones de trifluorometilación tienen gran importancia en la industria farmacéutica por las propiedades que confieren a los compuestos que presentan tal grupo funcional. Este tipo de reacciones están presentes en la elaboración de sintones o unidades estructurales claves para la producción de Aprepitant, Fluoxetina, Leflunomida y Dutasterida, teniendo gran impacto en la industria farmacéutica. Se resumen los diferentes reactivos empleados en la trifluorometilación remarcando la relevancia que tienen las reacciones catalizadas por metales de transición en la obtención de procesos más baratos y limpios.

DOI: https://doi.org/10.54167/tecnociencia.v16i1.838

Citas

Bazyar, Z. & Hosseini-Sarvari, M. (2019). Au@ZnO Core-shell: Scalable photocatalytic trifluoromethylation using CF3COONa as an inexpensive reagent under visible light irradiation. Organic Process Research & Development, 23, 2345-2353. https://doi.org/10.1021/acs.oprd.9b00225

Chang, Y. & Cai, C. (2005). Trifluoromethylation of carbonyl compounds with sodium trifluoroacetate. Journal of Fluorine Chemistry, 126, 937-940. https://doi.org/10.1016/j.jfluchem.2005.04.012

Cotté, A., Gotta, M., Beller, M., Schareina, T., Zapf, A., Wu, X-F. (2013). Copper-catalysed process for the production of substituted or unsubstituted trifluormethylated aryl and heteroaryl compounds. US Patent. No. 8,530,666 B2. https://patents.google.com/patent/US8530666B2/en

Dubinina, G., Furutachi, H., & Vicic, D.A. (2008). Active trifluoromethylating agents from well-defined Copper(I)-CF3 complexes. Journal of the American Chemical Society, 130, 8600-8601. https://doi.org/10.1021/ja802946s

Hu, W.-Q., Pan, S., Xu, X.-H., Vicic, D.A., & Qing, F.-L. (2020). Nickel-mediated trifluoromethylation of phenol derivatives by aryl C-O bond activation. Angewandte Chemie, 59,37, 16076-16082. https://doi.org/10.1002/anie.202004116

Johansen, M.B. & Linhardt, A.T. (2020). Copper-catalyzed and additive free decarboxylative trifluoromethylation of aromatic and heteroaromatic iodides. Organic & Biomolecular Chemistry 18, 1415-1225. https://doi.org/10.1039/C9OB02635E

Kiyohide, M., Etsuko, T., Midori, A., Kiyosi, K. (1981). A convenient trifluoromethylation of aromatic halides with sodium trifluoroacetate. Chemistry Letters, 10, 1719-1720. https://doi.org/10.1246/cl.1981.1719

McLoughlin, V.C.R. & Thrower, J. (1968). Manufacture of organic compounds containing fluorine. US Patent No. 3,408,411A. https://patents.google.com/patent/US3408411A/en

Lecturas complementarias

Alonso, C., Martínez de Marigorta, E., Rubiales, G. & Palacios, F. (2015). Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chemical Reviews, 115, 1847−1935. https://doi.org/10.1021/cr500368h

Ashton, T.D., Devine, S.M., Mòhrle, J.J., Laleu, B., Burrows, J.N., Charman, S.A., Creek, D.J. & Sleebs, B.E. (2019). The development process for discovery and clinical advancement of modern antimalarials. Journal of Medicinal Chemistry, 62, 10526–10562. https://doi.org/10.1021/acs.jmedchem.9b00761

Ball, N.D., Kampf, J.W. & Sanford, M.S. (2010). Aryl-CF3 Bond-forming reductive elimination from palladium (IV). Journal of the American Chemical Society, 132, 2878-2879. https://doi.org/10.1021/ja100955x

McReynolds, K.A., Lewis, R.S., Ackerman, L.K.G., Dubinina, G.G., Brennessel, W.W. & Vicic, D.A. (2010). Decarboxylative trifluoromethylation of aryl halides using well-defined copper–trifluoroacetate and –chlorodifluoroacetate precursors. Journal of Fluorine Chemistry, 131, 1108–1112. https://doi.org/10.1016/j.jfluchem.2010.04.005

Nakamura, Y., Fujio, M., Murase, T., Itoh, Y., Serizawa, H., Aikawa, K. & Mikami, K. (2013). Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide. Beilstein Journal of Organic Chemistry 9, 2404-2409. https://doi.org/10.3762/bjoc.9.277

Schiesser, S., Chepliaca, H., Kollback, J., Quennesson, T., Czechtizky, W. & Cox, R.J. (2020). N-trifluoromethyl amines and azoles: An underexplored functional group in the Medicinal Chemist’s Toolbox. Journal of Medicinal Chemistry, 63, 13076–13089. https://doi.org/10.1021/acs.jmedchem.0c01457

Tomashenko, O.A. & Grushin, V.V. (2011). Aromatic trifluoromethylation with metal complexes. Chemical Reviews, 111, 4475–4521. https://doi.org/10.1021/cr1004293

Wang, J., Sánchez-Rosello, M., Aceña, J.L., del Pozo, C., Sorochinsky, A.E., Fustero, S., Soloshonok, V.A., & Liu, H. (2014). Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chemical Reviews 114, 2432-2506. https://doi.org/10.1021/cr4002879

Wenthur, C.J., Bennett, M.R., & Lindsley, C.W. (2014). Classics in chemical neuroscience: Fluoxetine (Prozac). ACS Chemical Neuroscience 5(1), 14-23. https://doi.org/10.1021/cn400186j

Zhang, C. (2014). Recent advances in trifluoromethylation of organic compounds using Umemoto`s reagents. Organic & Biomolecular Chemistry 12, 6580-6589. https://doi.org/10.1039/C4OB00671B

Publicado
2022-01-27
Cómo citar
Gómez Benítez, E. V. (2022). Reacciones de trifluorometilación catalizadas por metales de transición: Transition Metal Catalyzed Trifluoromethylation Reactions. TECNOCIENCIA Chihuahua, 16(1), e 838. https://doi.org/10.54167/tecnociencia.v16i1.838