Productos alternativos a la aminoetoxivinilglicina para el control de la producción de etileno en manzana 'Golden Delicious'

Aminoethoxyvinylglicyne alternative products to control the release of ethylene in apple fruit cv. 'Golden Delicious'

  • David Ignacio Berlanga-Reyes Centro de Investigación en Alimentación y Desarrollo, AC
  • Víctor Manuel Guerrero-Prieto Centro de Investigación en Alimentación y Desarrollo, AC
  • José de Jesús Ornelas-Paz Centro de Investigación en Alimentación y Desarrollo, AC
Palabras clave: Malus x domestica, ácido cítrico, ácido salicílico, cobalto

Resumen

Chihuahua produce el 66 % de la manzana (Malus x domestica Borkh) a nivel nacional, siendo el cultivar ‘Golden Delicious’ el de mayor superficie plantada. La necesidad de controlar la maduración de la fruta para programar la cosecha, ha condicionado el uso de productos a base de la aminoetoxivinilglicina (AVG), un inhibidor de la síntesis del etileno, y por lo tanto de la maduración de los frutos climatéricos. Este producto es eficaz, pero de alto costo. En este estudio se evaluó la eficiencia de productos alternativos al AVG de menor costo. Se asperjaron manzanos ‘Golden Delicious’ en precosecha durante el ciclo 2008, con los tratamientos: ácido salicílico (AS; 1, 0.1 y 0.01 μM), cobalto (40, 60 y 80 mg Co++·L-1), ácido cítrico (AC; 533 mg·L-1) y AVG (123 mg·L-1) y agua como testigo. Los tratamientos de AS (0.01 y 1.0 μM) y de AC redujeron significativamente la concentración interna de etileno en los frutos, en comparación con el testigo, y a un nivel similar al AVG, con concentraciones de etileno de 0.6, 0.6, 0.4, 1.7 y 0.4 ppm, respectivamente. Los tratamientos con cobalto, a 40 y 80 mg Co++·L-1, retrasaron el pico climatérico en tres semanas. Los tratamientos con AS y cobalto indujeron frutos con color de cáscara más verde y con menor concentración de sólidos solubles, indicando un estado menos avanzado de maduración. Los tratamientos precosecha con AS, AC, y cobalto, representan una herramienta en el control de la maduración de manzanas ‘Golden Delicious’.

Abstract

Chihuahua produces 66 % of the apple (Malus x domestica Borkh) production in Mexico, being ‘Golden Delicious’ apple cultivar the most widely planted. The need to control fruit maturation in order to schedule harvest has made the use of aminoethoxyvinylglicine (AVG) almost a must, since it is an efficient ethylene synthesis inhibitor, and therefore a retardant of the maturation process in climacteric fruits; however it is an expensive product too. In this trial the effectiveness of alternative products to AVG, at a lower sell price, were evaluated. ‘Golden Delicious’ apple trees were sprayed before harvest during the 2008 season with: salicylic acid (AS; 1.0, 0.1 and 0.01 μM), cobalt (40, 60 and 80 mg Co++·L-1), citric acid (AC; 533 mg L-1), AVG (123 mg·L-1) and water as control. The treatments with AS (0.01 and 1.0 μM) and with AC reduced the internal concentration of ethylene in the fruit respect to control, and to a similar level as AVG did it, with internal ethylene concentration of 0.6, 0.6, 0.4, 1.7 and 0.4 ppm, respectively. Treatments with cobalt at 40 and 80 mg Co++·L-1 delayed in three weeks the climacteric peak. AS and cobalt produced fruits with greener peel and lower level of soluble solids, indicating a less advanced maturation stage. Therefore, the preharvest treatments with AS, AC and cobalt offer to growers a tool to control the maturation of ‘Golden Delicious’ apple fruits.

Keywords: Malus x domestica, citric acid, salicylic acid, cobalt.

Citas

Báez, M.A., J.H. Siller, J.B. Heredia, T. Portillo, E. Araiza, R.S. García & M.D. Muy. 1997. Fisiología de poscosecha de frutos de chicozapote (Achras sapota L.) durante condiciones de mercadeo. Proceedings of the Interamerican Society for Tropical Horticulture 41: 209-214.

Bartram, R.B., W. Bramlage, E.M. Kupferman, K.L. Olsen, M.E. Patterson & J. Thompson. 1993. Apple Maturity Program Handbook. U.S.D.A.-ARS Tree Fruit Research Station, Wenatchee, Wa.

Bouzayen, M., G. Felix, A. Latché, J.C. Pech & T. Boller. 1991. Iron: An essential cofactor for the conversion of 1- Aminocyclopropane-1-carboxylic acid to ethylene. Planta 184(2):244-247. https://doi.org/10.1007/bf00197953

Calderón, A.E. 1989. Fruticultura General. El esfuerzo del hombre. Tercera Edición. Editorial LIMUSA.

Ducamp-Collin, M.N., H. Ramarson, M. Lebrun, G. Self & M. Reynes. 2008. Effect of citric acid and chitosan on maintaining red colouration of litchi fruit pericarp. Postharvest Biology and Technology 49(2):241-246. https://doi.org/10.1016/j.postharvbio.2008.01.009

Leslie, C. A. & R. J. Romani. 1988. Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiology 88(3):833-837. https://doi.org/10.1104/pp.88.3.833

Li, D.P., Y.F. Xu, L. P. Sun, L.X. Liu, X.L. Hu, D.Q. Li & H.R. Shu. 2006. Salicylic acid, ethephon, and methyl jasmonate enhance ester regeneration in 1-MCP-treated apple fruit after long- term cold storage. Journal of Agricultural and Food Chemistry 54(11):3887-3895. https://doi.org/10.1021/jf060240j

Morin, F. & C. Hartmann. 1986. Changes in free and conjugated -aminocyclopropane-1-carboxylic acid and in 1- 1 aminocyclopropane-1- carboxylic acid synthase activity in the senescent Golden Delicious apple. Journal of Plant Physiology 125(1-2):173-178. https://doi.org/10.1016/S0176-1617(86)80255-3

Pech, J.C., M. Bouzayen, A. Latché, M. Sanmartin, A. Aggelis & A.K. Kanellis. 2003. Physiological, biochemical, and molecular aspects of ethylene biosynthesis and action. En Postharvest Physiology and Pathology of Vegetables (p.p. 247-285). 2nd Edition. Marcel Dekker Inc. ISBN 9780824706876. http://dx.doi.org/10.1201/9780203910092.ch10

Romani, R.J., B.M. Hess & C. A. Leslie. 1989. Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. Journal of Plant Growth Regulation 8:63-69. https://doi.org/10.1007/BF02024927

SAS Institute. 2002. Statistical Analysis System. SAS/STAT User’s guide. Version 9.0.SAS Institute Inc.

Serek, M. & M.S. Reid. 2000. Role of growth regulators in the postharvest life of ornamentals. En Plant Growth Regulators in Agriculture and Horticulture (p.p. 147-174). Haworth Press Inc. ISBN 9781560228967.

Silverman, F.P., P.D. Petracek, M.R. Noll & P. Warrior. 2004. Aminoethoxyvinylglycine effects on late season apple fruit maturation. Plant Growth Regulation 43(2):153-161. https://doi.org/10.1023/B:GROW.0000040113.05826.d2

Srivastava, M.K. & U.N. Dwivedi. 2000. Delayed ripening of banana fruit by salicylic acid. PlantScience 158(1-2):87-96. https://doi.org/10.1016/S0168-9452(00)00304-6

Servicio de Información Agroalimentaria y Pesquera. 2009. https://www.gob.mx/siap

Urlich, R. 1970. Organic acids. En The biochemistry of fruits and their products. Vol. 1. (p.p. 89-118). Academic press London and New York. ISBN 0123612012, 9780123612014.

Yuan, R. & D.H. Carbaugh. 2007. Effects of NAA, AVG, and 1- MCP on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ‘Golden Supreme’ and ‘Golden Delicious’ apples. HortScience 42(1):101-105. https://doi.org/10.21273/HORTSCI.42.1.101

Zhang, Y., K. Chen, S. Zhang & I. Ferguson. 2003. The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology 28(1):67-74. https://doi.org/10.1016/S0925-5214(02)00172-2

Publicado
2020-11-03
Cómo citar
Berlanga-Reyes, D. I., Guerrero-Prieto, V. M., & Ornelas-Paz, J. de J. (2020). Productos alternativos a la aminoetoxivinilglicina para el control de la producción de etileno en manzana ’Golden Delicious’: Aminoethoxyvinylglicyne alternative products to control the release of ethylene in apple fruit cv. ’Golden Delicious’. TECNOCIENCIA Chihuahua, 5(2), 83-89. https://doi.org/10.54167/tch.v5i2.698