Las proteínas DING, una familia con intrigantes funciones celulares

  • Ligia Brito-Argáez Centro de Investigación Científica de Yucatán A.C
  • Rita Uc-Ku Centro de Investigación Científica de Yucatán A.C
  • José Aarón Tamayo-Sansores Centro de Investigación Científica de Yucatán A.C
  • Dianeli Madera-Piña Centro de Investigación Científica de Yucatán A.C
  • Ignacio Islas-Flores Centro de Investigación Científica de Yucatán A.C
Palabras clave: Hypericum perforatum, Pseudomonas sp, proteínas DING, anticancerígenos

Resumen

La familia de las proteínas DING recibe este nombre porque en especies filogenéticamente distantes, dichos aminoácidos están altamente conservados en el extremo N-terminal. Sus integrantes tienen un peso molecular ~40 kDa, están relacionadas con el metabolismo del fosfato, son secretadas y en su mayoría poseen actividad enzimática de fosfatasa. Inicialmente se creyó que las proteínas DING eran exclusivas de Pseudomonas sp., pero ahora se sabe que están distribuidas en los diferentes reinos biológicos. El descubrimiento de esta familia se fundamentó en la secuenciación de aminoácidos debido a que, con excepción de Pseudomonas fluorescens, P. aeruginosa y algunos otros procariontes, los genes que las codifican no han sido encontrados en las bases de genes de los eucariontes cuyos genomas han sido ya secuenciados. Las proteínas DING tienen funciones biológicas controversiales y por ello están siendo objeto de intensa investigación. En células animales se les ha asociado con la aparición de enfermedades como el cáncer de mama y la caquexia, pero también con la protección contra la arterioesclerosis y la litiasis. En vegetales, algunas proteínas DING muestran propiedades citotóxicas sobre células tumorales o de inhibición de la replicación del virus VIH-1. La evidencia biológica muestra que el mecanismo de acción de las proteínas DING puede ser variado y el resultado contrastante. Dada la potencial aplicación terapéutica de estas proteínas, en esta revisión se describen los hallazgos que se han realizando en esta familia debido a que previamente a su aplicación es necesario entender los mecanismos que regulan sus funciones.

Abstract

The DING family of proteins called because in phylogenetically distant species, these amino acids are highly conserved in the N- terminal. The members have a molecular weight of ~40 kDa, are related to phosphate metabolism, are secreted and have mostly phosphatase enzymatic activity. Initially it was believed that DING proteins were unique to Pseudomonas sp., but is now known they are distributed in different biological kingdoms. The discovery of this family was based on the sequencing of amino acids because, with the exception of Pseudomonas fluorescens, P. aeruginosa and some other prokaryotes, the genes that encode them have not been found on the basis of genes of eukaryotes whose genomes have already been sequenced. The DING proteins have controversial biological functions and are therefore the subject of intense research. In animal cells they have been associated with the occurrence of diseases such as breast cancer and cachexia, but also to protection against atherosclerosis and gallstones. In plants, DING proteins exhibit some cytotoxic properties on tumor cells or on inhibiting the replication of HIV-1 virus. Biological evidence shows that the mechanism of action of the DING proteins can be varied and with contrasting results. Given the potential therapeutic application of these proteins, in this review, we described the findings that have been made in this family, since before its exploitation it is necessary to understand the mechanisms that regulate their functions.

Keywords: Hypericum perforatum; Pseudomonas sp., DING proteins, anticancer drugs.

Citas

Ahn, S., S. Moniot, M. Elias, E. Chabriere, D. Kim & K. Scott. 2007. Structure-function relationships in bacterial DING protein. FEBS Letters 581(18):3455-3460. https://doi.org/10.1016/j.febslet.2007.06.050

Amini, S., N. Merabova, K. Khalili & N. Darbinian. 2009. P38SJ, a novel DINGG protein protects neuronal cells from alcohol induced injury and death. Journal of Cellular Physiology 221(3):499-504. https://doi.org/10.1002/jcp.21903

Aviram, M. & M. Rosenblat. 2004. Paraoxonase 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radical Biology and Medicine 37(9):1304-1316. https://doi.org/10.1016/j.freeradbiomed.2004.06.030

Ball, G., V. Viarre, S. Garvis, R. Voulhouux & A. Filloux. 2012. Type II-dependent secretion of a Pseudomonas aeruginosa DING protein. Research in Microbiology 163(6-7):457-469. https://doi.org/10.1016/j.resmic.2012.07.007

Belenky, M., J. Prasain, H. Kim & S. Barnes. 2003. DING a genistein target in human breast cancer: a protein without a gene. Journal of Nutrition 133(7 Suppl):2497S-2501S. https://doi.org/10.1093/jn/133.7.2497s

Berna, A., F. Bernier, E. Chabriere, M. Elias, K. Scott & A. Suh. 2009. For whom the bell tolls? DING proteins in health and disease. Cellular and Molecular Life Sciences 66(14): 2205-2218. https://doi.org/10.1007/s00018-009-0006-6

Berna, A., F. Bernier, E. Chabriere, T. Perera & K. Scott. 2008. DING proteins: novel members of a prokaryotic phosphate- binding protein superfamily which extends into the eukaryotic kingdom. International Journal of Biochemistry and Cell Biology 40(2):170-175. https://doi.org/10.1016/j.biocel.2007.02.004

Berna, A., K. Scott, E. Chabriere & F. Bernier. 2009. The DING family of proteins: ubiquitous in eukaryotes, but where are the genes? BioEssays 31(5): 570-580. https://doi.org/10.1002/bies.200800174

Bernier, F. 2013. DING proteins: numerous functions, elusive genes, a potential for health. Cellular and Molecular Life Sciences 70(17):3045-3056. https://doi.org/10.1007/s00018-013-1377-2

Bookland, M., N. Darbinian, M. Weaver, S. Amini & K. Khalili. 2012. Growth inhibition of malignant glioblastoma by DING protein. Journal of Neuro-oncology 107(2): 247-256. https://doi.org/10.1007/s11060-011-0743-x

Bray, F., J. S. Ren, E. Masuyer & J. Ferlay. 2013. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. International Journal of Cancer 132(5):1133-1145. https://doi.org/10.1002/ijc.27711

Brito-Argáez, L., F. Moguel-Salazar, F. Zamudio, T. González- Estrada & I. Islas-Flores. 2009. Characterization of a Capsicum chinense seed peptide fraction with broad anti-bacterial activity. Asian Journal of Biochemistry 4(3):77-87. https://dx.doi.org/10.3923/ajb.2009.77.87

Bookland, M. J., N. Darbinian, M. Weaver, S. Amini & K. Khalili. 2012. Growth inhibition of Malignant glioblastoma by DING protein. Journal of Neuro-oncology 107(2): 247-256. https://doi.org/10.1007/s11060-011-0743-x

Bush, D., H. Fritz, C. Knight, J. Mount & K. Scott. 1998. A hirudin-sensitive, growth-related proteinase from human fibroblast. Journal of Biological Chemistry 379(2): 225-229. https://doi.org/10.1515/bchm.1998.379.2.225

Chen, Z., C. F. Franco, R. P. Baptista, J. M. Cabral, A. V. Coelho, C. J. Rodrigues & E. P. Melo. 2007. Purification and identification of cutinases from Colletotrichum kahawae and Colletotrichum gloesporioides. Applied Microbiology and Biotechnology 73(6):1306-1313. https://doi.org/10.1007/s00253-006-0605-1

Colgrove, R. & A. Japour. 1999. A combinatorial ledge: reverse transcriptase fidelity, total body viral borden, and the implications of multiple-drug HIV therapy for the evolution of antiviral resistance. Antiviral Research 41(1):45-56. https://doi.org/10.1016/s0166-3542(98)00062-x

Darbinian, N., M. Czernik,A. Darbinyan, M. Elias, E. Chabriere, S. Bonasu, K. Khalili & S. Amini. 2009. Evidence for phosphatase activity of p27SJ and its ampact on the cell cycle. Journal of Cellular Biochemistry 107(3): 400-407. https://doi.org/10.1002%2Fjcb.22135

Darbinian-Sarkissian, N., A. Darbinyan, J. Otte, S. Radhakrishnan, B. E. Sawaya, A. Arzumanyan, G. Chispitsyna, Y. Popov, J Rappaport, S. Amini & K. Khalili. 2006. P27(SJ), a novel protein in St John´s Wort, that suppresses expression of HIV-1 genome. Gene Therapy 13(4): 288-295. https://doi.org/10.1038/sj.gt.3302649

Diemer, H., M. Elias, F. Renault, D. Rochu, C. Contreras-Martel, C. Schaeffer, A. Van Dorsselaer & E. Chabriere. 2008. Tandem use of X-ray crystallography and mass spectrometry to obtain ab initio the complete and exact amino acids sequence of HPBP, a human 38-kDa apolipoprotein. Protein Structure Function Bioinformatics 71(4): 1708-1720. https://doi.org/10.1002/prot.21866

Di Maro, A., A. De Maio, S. Castellano,A. Parente, B. Farina & M. R. Faraone-Menella. 2008. The ADP-ribosylating thermozyme from Sulfolobus solfataricus is a DING protein. Journal of Biological Chemistry 390(1): 27-30. https://doi.org/10.1515/bc.2009.006

Domingo, P. & F. Vidal. 2011. Combination antiretroviral therapy. Expert Opinion on Pharmacotherapy 12(7): 995-998. https://doi.org/10.1517/14656566.2011.567001

Felder, C. B., R. C. Graul, A.Y. Lee, H. P. Merkle & W. Sadee. 1999. The venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci 1(2):7-26. https://doi.org/10.1208/ps010202

Ferlay, J., I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, M. D. Parkin, D. Forman & F. Bray. 2013. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC cancerbase No. 11. International Agency for Research on Cancer. ISBN 9789283224471.

Griffaut, B., E. Debiton, J. C. Madelmont, J. C. Mauriziz & G. Ledoigt. 2007. Stressed Jerusalem artichoke tubers (Helianthus tuberosus L.) excrete a protein fraction with specific cytotoxicity on plant and animal tumour cell. Biochimica et Biophysica Acta 1170(9):1324-1330. https://doi.org/10.1016/j.bbagen.2007.06.007

Haddar, A., A. Bougatef, R. Agrebi, A. Sellami-Kamoun & M. Nasri. 2009. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization. Process Biochemistry 44(1):29-35. https://doi.org/10.1016/j.procbio.2008.09.003

Hain, N.A., B. Stuhlmüller, G. R. Hahn, J. R. Kalden, R. Deutzmann & G. R. Burnester. 1996. Biochemical characterization and microsequencing of a 205-kDa synovial protein stimulatory for T cells and reactive with rheumatoid factor containing sera. Journal of immunology 157(4):1773-17780. https://doi.org/10.4049/jimmunol.157.4.1773

Haldar, K., S. Kamoun, N. L. Hiller, S. Bhattacharje & C. Van Ooij. 2006. Common infection strategies of pathogenic eukaryotes. Nature Reviews Microbiology 4(12):922-931. https://doi.org/10.1038/nrmicro1549

Henderson, A.J. & K. L. Calame. 1997. CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proceedings of the National Academy of Sciences USA 94(16): 8714-8719. https://doi.org/10.1073/pnas.94.16.8714

Islas, I., Y. Minero & C. James. 2005. Proteínas contra las infecciones de las plantas. Ciencia 56: 64-74. https://www.revistaciencia.amc.edu.mx/images/revista/56_1/proteinas_infecciones_plantas.pdf

Khalili, K. & N. Sarkissian. 2003. Antiproliferative protein from Hypericum perforatum and nucleic acids encoding the same. US patent 60/376,996. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2003093787

Kumar, V., S. Yu, G. Farrell, F. G. Toback & J. C. Lieske. 2004. Renal epithelial cells constitutively produce a protein that blocks adhesion of crystals to their surface. American Journal of Physiology 287(3): F373-F383. https://doi.org/10.1152/ajprenal.00418.2003

Laladhas, K. P., V. T. Cheriyan, V. T. Puliappadamba, S. V. Bava, R. G. Unnithan, P. L. Vijayammal & R. J. Anto. 2010. A novel protein fraction from Sesbania grandiflora shows potential anticancer and chemopreventive efficacy, in vitro and in vivo. Journal of Cellular and Molecular Medicine 14(3):636-646. https://doi.org/10.1111/j.1582-4934.2008.00648.x

Lamartiniere, C. A., J. B. Moore, N. M. Brown, R. Thompson, M. J. Hardin & S. Barnes. 1995. Genistein suppresses mammary cancer in rats. Carcinogenesis 16(11):2833-2840. https://doi.org/10.1093/carcin/16.11.2833

Lewis, P. A. & D. Crowther. 2005. DING proteins are from Pseudomonas. FEMS Microbiology 252(2): 215-222. https://doi.org/10.1016/j.femsle.2005.08.047

Liebshner, D., M. Elias, S. Moniot, B. Fournier, K. Scott, C. Jelsch, C. Leconte & E. Chabriere. 2009. Elucidation of the phosphate binding mode of DING proteins revealed by subangstrom X- ray crystallography. Journal of the American Chemical Society 131(22):7879-7886. https://doi.org/10.1021/ja901900y

Luecke, H. & F. A. Quiocho. 1990. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347(6291):402-406. https://doi.org/10.1038/347402a0

Moguel-Salazar, F., L. Brito-Argáez, M. Díaz-Brito & I. Islas- Flores. 2011. A review of a promising therapeutic and agronomical alternative: animicrobial peptides from Capsicum sp. African Journal of Biotechnology 10(8): 19918-19928. https://academicjournals.org/journal/AJB/article-stat/99AA34737009

Moniot, S., M. Elias, D. Kim, K. Scott & E. Chabriere. 2007. Crystallization, diffraction data collection and preliminary crystallographic analysis of DING protein from Pseudomonas fluorescens. Acta Crystallographica Sect F Struct Biol Cryst Commun. 63(Pt 7):590-592. https://doi.org/10.1107/s1744309107028102

Morales, R., A. Berna, P. Carpentier, C. Contreras-Martel, F. Renault, M. Nicodeme, M. L. Chesne-Seck, F. Bernier, J. Dupuy, C. Schaeffer, H. Diemer, A. Van-Dorsselaer, J. C. Fontecilla-Camps, P. Masson, P. Rochu & E. Chabriere. 2006. Serendipitous discovery and X-ray structure of a human phosphate binding apolipoprotein. Structure 14(3): 601-609. https://doi.org/10.1016/j.str.2005.12.012

Pantazaki, A. A., G. P. Tsolkas & D. A. Kyriakidis. 2008. A DING Phosphatase in Thermus thermophilus. Amino acids 34(3): 437- 448. https://doi.org/10.1007/s00726-007-0549-5

Perera, T., A. Berna, K. Scott, C. Lemaitre-Guillier & F. Bernier. 2008. Proteins related to St. John´s Wort p27SJ, a suppressor of HIV-1 expression, are ubiquitous in plants. Phytochemistry 69(4): 865-872. https://doi.org/10.1016/j.phytochem.2007.10.001

Renault, F., E. Chabriere, J.P. Andrieu, B. Dublet, P. Masson & D. Rochu. 2006. Tandem purification of two HDL-associated partner proteins in human plasma, paraoxonase (PON1) and phosphate binding protein (HPBP) using hydroxyapatite chromatography. Journal of Chromatography B 836(1-2):15-21. https://doi.org/10.1016/j.jchromb.2006.03.029

Robertson, D., G. P. Mitchell, J. S. Gilroy, C. Gerrish, G. P. Bolwell & A. R. Slabas. 1997. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. Journal of Biological Chemistry 272(25): 15841-15848. https://doi.org/10.1074/jbc.272.25.15841

Rochu, D., F. Renault, C. Clery-Barraud, E. Chabriere & P. Masson. 2007. Stability of highly purified human paraoxonase (PON1): association with human phosphate binding protein (HPBP) is essential for preserving its active conformation(s). Biochimica et Biophysica Acta 1774(7):874-883. https://doi.org/10.1016/j.bbapap.2007.05.001

Sachdeva, R. & M. Simm. 2011. Application of linear polyacrylamide coprecipitation of denaturated templates for PCR amplifications of ultra-rapidly reannealing DNA. Biotechniques 50(4):217-219. https://doi.org/10.2144/000113654

Samaha, H., V. Delorme, F. Pontvianne, R. Cooke, F. Delalande, A. Van Dorsselaer, M. Echeverria & J. Saez-Vasquez. 2010. Identification of protein factors and U3 snoRNAS from Brassica oleracea RNP complex involved in the processing of pre-rRNA. Plant Journal 61(3):383-398. https://doi.org/10.1111/j.1365-313x.2009.04061.x

Scott, K. & L. Wu. 2005. Functional properties of a recombinant bacterial DING protein: comparison with homologous human protein. Biochimica et Biophysica Acta 1744(2):234-244. https://doi.org/10.1016/j.bbamcr.2005.02.003

Seo, P. J., S. G. Hong Kim & C. M. Park. 2011. Competitive inhibition of transcription factors by small interfering peptides. Trends in Plant Sciences 16(10):541-549. https://doi.org/10.1016/j.tplants.2011.06.001

Shafer, R. W. & J. M. Schapiro. 2008. HIV-1 drug Resistance mutations: an updated framework for the second decade of HAART. AIDS Review 10(2):67-84. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547476/

Staudt, A. C. & S. Wenkel. 2011. Regulation of protein function by ¨microProteins¨. EMBO Reports 12(1):35-42. https://doi.org/10.1038%2Fembor.2010.196

Suh, A., V. Le Douce, O. Rohr, C. Schwartz & K. Scott. 2013. Pseudomonas DING proteins as human transcriptional regulators and HIV-1 antagonists. Virology Journal 10: 234-242. https://doi.org/10.1186/1743-422x-10-234

Tan, A. S. & E. A. Worobec. 1993. Isolation and characterization of two immunochemically distinct alkaline phosphatases from Pseudomonas aeruginosa. FEMS Microbiology Letters 106(3):281-286. https://doi.org/10.1111/j.1574-6968.1993.tb05977.x

Todorov, W. K., S. M. Wyke & M. J. Tisdale. 2007. Identification and characterization of a membrane receptor for proteolysis-inducing factor on skeletal muscle. Cancer Research 67(23):11419-11427. https://doi.org/10.1158/0008-5472.can-07-2602

Wang, Z., A. Choudhary, P.S. Ledvina & F. A. Quiocho. 1994. Fine tuning the specificity of the periplasmic phosphate transport receptor. Site-directed mutagenesis, ligand binding, and crystallographyc studies. Journal of Biological Chemistry 269(40): 25091-25094. https://doi.org/10.2210/pdb1pbp/pdb

Wang, Z., H. Luecke, N. Yao & F. A. Quiocho. 1997. A low energy short hydrogen bond in very high resolution structures of protein receptor-phosphate complexes. Natural Structural and Molecular Biology 4(7):519-522. https://doi.org/10.1038/nsb0797-519

Watts, L. T., M. L. Rathinam, S. Schenker & G. I. Henderson. 2005. Astrocytes protect neurons from ethanol-induced oxidative stress and apoptotic death. Journal of Neuroscience Research 80(5): 655-666. https://doi.org/10.1002/jnr.20502

Yang, J., B. Xie & Q. Yang. 2012. Purification and characterization of a nitroreductase from the soil bacterium Streptomyces mirabilis. Process Biochemistry 47(5): 720-724. https://doi.org/10.1016/j.procbio.2012.01.021

Yu, S., H. Huang, A. Liuk, W. H. Wang, K. B. Javasundera, W.A. Tao, C.B. Post & R.L. Geahlen. 2013. SyK inhibits the activity of protein kinase A by phosphorylating tyrosine 330 of the catalytic subunit. Journal of Biological Chemistry 288(15): 10870-10881. https://doi.org/10.1074/jbc.m112.426130

Zhang, S. L., L. G. Zhang, M.K. Zhang & M. X. Hui. 2010. Sequence analysis of beta-esterase isoenzymes related to fertility change-over in TsCMS7311 of chinese cabbage (Brassica rapa L. ssp pekinensis). African Journal Biotechnology 9(51): 8833-8836. https://www.ajol.info/index.php/ajb/article/view/125913

Publicado
2020-10-31
Cómo citar
Brito-Argáez, L., Uc-Ku, R., Tamayo-Sansores, J. A., Madera-Piña, D., & Islas-Flores, I. (2020). Las proteínas DING, una familia con intrigantes funciones celulares. TECNOCIENCIA Chihuahua, 8(1), 17-29. Recuperado a partir de https://vocero.uach.mx/index.php/tecnociencia/article/view/649
Sección
Medio Ambiente y Desarrollo Sustentable