Comparación de la eficiencia de transformación entre diferentes cepas de E. coli

Comparison of transformation efficiency in different E. coli strains

  • María Georgina Gómez-Fierro UACH. Facultad de Medicina y Ciencias Biomédicas.
  • Samantha Yolotzin García-Cárdenas UACH. Facultad de Medicina y Ciencias Biomédicas. https://orcid.org/0000-0002-0559-4755
  • Daniela Grissel Ruvalcaba-Hidrogo UACH. Facultad de Medicina y Ciencias Biomédicas.
  • Carmen Carolina Alvarado-González UACH. Facultad de Medicina y Ciencias Biomédicas.
  • Óscar Enrique Juárez-Acosta UACH. Facultad de Medicina y Ciencias Biomédicas.
  • Mayela Rosario Espinoza-Duarte UACH. Facultad de Medicina y Ciencias Biomédicas. https://orcid.org/0000-0002-6260-6206
  • Gerardo Pável Espino-Solís UACH. Facultad de Medicina y Ciencias Biomédicas. https://orcid.org/0000-0002-9549-0676
Palabras clave: E. coli, transformación, thermal shock, MgCl2/ CaCl2 method

Resumen

La transformación es la introducción y expresión de ADN exógeno por células bacterianas. La eficiencia de la transformación puede medirse en unidades formadoras de colonia/ml (UFC/ml) y es susceptible al método utilizado, a la cepa bacteriana utilizada para la expresión y al propio vector. En este trabajo se busca evaluar las diferencias en la eficiencia de transformación de dos plasmidos de expresión (pExp-Lib y pSF-CMV- Ub-puro-SV40 Ori Sbfl), en cuatro cepas diferentes de E. coli (DH5a, BL21, XL1-Blue y TG1) utilizando un método de preparación de células competentes basado en el uso de MgCl2/CaCl2. En todas las cepas utilizadas, el crecimiento bacteriano y la eficiencia de transformación fueron mayores para las cepas con el vector pExp, a excepción de BL21, donde la eficiencia fue más elevada para el vector pSF.

DOI: https://doi.org/10.54167/tch.v13i2.434

Citas

Aachmann, F.L. & Aune, T.E. 2009. Use of cyclodextrin and its derivatives for increased transformation efficiency of competent bacterial cells. Appl Microbiol Biotechnol 83(3), 589-596. https://doi.org/10.1007/s00253-009-1907-x

Baeshen, M.N., Al-Hejin, A.M., Bora, R.S., Ahmed, M.M., Ramadan, H.A., Saini, K.S., Baeshen, N.A. & Redwan, E.M. 2015. Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives. J Microbiol Biotechnol 25(7), 953-962. https://doi.org/10.4014/jmb.1412.12079

Blount, Z.D. 2015. The Natural History of Model Organisms: The unexhausted potential of E. coli. eLife 4: e05826. https://doi.org/10.7554%2FeLife.05826

Brogden, K.A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3, 238-250. https://doi.org/10.1038/nrmicro1098

Brooks, L., Kaze, M. & Sistrom, M., 2019. A Curated, Comprehensive Database of Plasmid Sequences. Microbiol Resour Announc 8(1). https://doi.org/10.1128/MRA.01325-18

Bruschi, F., Dundar, M., Gahan, P.B., Gartland, K., Szente, M., Viola-Magni, M.P. & Akbarova, Y., 2011. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA). Current Opinion in Biotechnol 22 Suppl 1, S7-14. https://doi.org/10.1016/j.copbio.2011.05.506

Carmen, S. & Jermutus, L., 2002. Concepts in antibody phage display. Brief Funct Genomic Proteomic 1(2), 189-203. https://doi.org/10.1093/bfgp/1.2.189

Chan, W.T., Verma, C.S., Lane, D.P. & Gan, S.K., 2013. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci Rep 33(6): e00086. https://doi.org/10.1042%2FBSR20130098

Chen, I. & Dubnau, D., 2004. DNA uptake during bacterial transformation. Nat Rev Microbiol 2, 241-249. https://doi.org/10.1038/nrmicro844

Choi, H.A., Lee, Y.C., Lee, J.Y., Shin, H.J., Han, H.K. & Kim, G.J., 2013. A simple bacterial transformation method using magnesium- and calcium-aminoclays. J Microbiol Methods 95(2), 97-101. https://doi.org/10.1016/j.mimet.2013.07.018

Cohen, S.N., Chang, A.C., Boyer, H.W. & Helling, R.B., 1973. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70(11), 3240-3244. https://doi.org/10.1073%2Fpnas.70.11.3240

Cohen, S.N., Chang, A.C., Boyer, H.W. & Helling, R.B., 1992. Construction of biologically functional bacterial plasmids in vitro. 1973. Biotechnology 24, 188-192. https://pubmed.ncbi.nlm.nih.gov/1422013/

Cohen, S.N., Chang, A.C. & Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69(8), 2110-2114. https://doi.org/10.1073%2Fpnas.69.8.2110

Crick, F.H., Barnett, L., Brenner, S. & Watts-Tobin, R.J., 1961. General nature of the genetic code for proteins. Nature 192, 1227-1232. https://doi.org/10.1038/1921227a0

da Silva, B.R., de Freitas, V.A., Nascimento-Neto, L.G., Carneiro, V.A., Arruda, F.V., de Aguiar, A.S., Cavada, B.S. & Teixeira, E.H., 2012. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature. Peptides 36(2), 315-321. https://doi.org/10.1016/j.peptides.2012.05.015

Fryszczyn, B.G., Brown, N.G., Huang, W., Balderas, M.A. & Palzkill, T., 2011. Use of periplasmic target protein capture for phage display engineering of tight-binding protein-protein interactions. Protein Eng Des Sel 24 (11), 819-828. https://doi.org/10.1093/protein/gzr043

Han, M.J., Yoon, S.S. & Lee, S.Y., 2001. Proteome analysis of metabolically engineered Escherichia coli producing Poly(3-hydroxybutyrate). J Bacteriol 183(1), 301-308. https://doi.org/10.1128/jb.183.1.301-308.2001

Hanahan, D., 1983. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4), 557-580. https://doi.org/10.1016/s0022-2836(83)80284-8

Hildebrand, A., Schlacta, T., Warmack, R., Kasuga, T. & Fan, Z., 2013. Engineering Escherichia coli for improved ethanol production from gluconate. J Biotechnol 168(1), 101-106. https://doi.org/10.1016/j.jbiotec.2013.07.033

Huang, C.J., Lin, H. & Yang, X., 2012. Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3), 383-399. https://doi.org/10.1007/s10295-011-1082-9

Janßen, H.J. & Steinbüchel, A., 2014. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7, 7. https://doi.org/10.1186/1754-6834-7-7

Jeong, H., Kim, H.J. & Lee, S.J., 2015. Complete Genome Sequence of Escherichia coli Strain BL21. Genome Announc 3(2): e00134-15. https://doi.org/10.1128%2FgenomeA.00134-15

Judson, H.F., 1996. The Eighth Day of Creation: Makers of the Revolution in Biology. Cold Spring Harbor Laboratory Press.

Kamionka, M., 2011. Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12(2), 268-274. https://doi.org/10.2174/138920111794295693

Kim, B., Park, H., Na, D. & Lee, S.Y., 2014. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol J 9(5), 621-629. https://doi.org/10.1002/biot.201300263

Kostylev, M., Otwell, A.E., Richardson, R.E., Suzuki, Y., 2015. Cloning Should Be Simple: Escherichia coli DH5alpha-Mediated Assembly of Multiple DNA Fragments with Short End Homologies. PLoS One 10(9): e0137466. https://doi.org/10.1371/journal.pone.0137466

Lehman, I.R., Zimmerman, S.B., Adler, J., Bessman, M.J., Simms, E.S. & Kornberg, A., 1958. Enzymatic Synthesis of Deoxyribonucleic Acid. V. Chemical Composition of Enzymatically Synthesized Deoxyribonucleic Acid. Proc Natl Acad Sci U S A 44(12), 1191-1196. https://doi.org/10.1073%2Fpnas.44.12.1191

Linn, S. & Arber, W., 1968. Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form. Proc Natl Acad Sci U S A 59(4), 1300-1306. https://doi.org/10.1073%2Fpnas.59.4.1300

Liu, J., Chang, W., Pan, L., Liu, X., Su, L., Zhang, W., Li, Q. & Zheng, Y., 2018. An Improved Method of Preparing High Efficiency Transformation Escherichia coli with Both Plasmids and Larger DNA Fragments. Indian J Microbiol 58(4), 448-456. https://doi.org/10.1007/s12088-018-0743-z

Liu, T. & Khosla, C., 2010. Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet 44, 53-69. https://doi.org/10.1146/annurev-genet-102209-163440

Mandel, M. & Higa, A., 1970. Calcium-dependent bacteriophage DNA infection. J Mol Biol 53(1), 159-162. https://doi.org/10.1016/0022-2836(70)90051-3

Meselson, M. & Yuan, R., 1968. DNA restriction enzyme from E. coli. Nature 217, 1110-1114. https://doi.org/10.1038/2171110a0

Pope, B. & Kent, H.M., 1996. High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Research 24(3), 536-537. https://doi.org/10.1093%2Fnar%2F24.3.536

Rahimzadeh, M., Sadeghizadeh, M., Najafi, F., Arab, S. & Mobasheri, H., 2016. Impact of heat shock step on bacterial transformation efficiency. Mol Biol Res Commun 5(4), 257-261. PMID: 28261629; PMCID: PMC5326489. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc5326489/

Rosano, G.L. & Ceccarelli, E.A., 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5, 172. doi: 10.3389/fmicb.2014.00172. PMID: 24860555; PMCID: PMC4029002. https://pubmed.ncbi.nlm.nih.gov/24860555/

Roychoudhury, A., Basu, S. & Sengupta, D.N., 2009. Analysis of comparative efficiencies of different transformation methods of E. coli using two common plasmid vectors. Indian J Biochem Biophys 46(5), 395-400. PMID: 20027870. https://europepmc.org/article/med/2268424

Serrano-Rivero, Y., & Fando-Calzada, R., 2013. Comparación de dos métodos para la preparación de células competentes en Escherichia coli. Revista CENIC Ciencias Biológicas 44(2). https://revista.cnic.cu/index.php/RevBiol/article/view/1026

Sinha, S. & Redfield, R.J., 2012. Natural DNA uptake by Escherichia coli. PLoS One 7(4), e35620. https://doi.org/10.1371/journal.pone.0035620

Yoshida, N. & Sato, M., 2009. Plasmid uptake by bacteria: a comparison of methods and efficiencies. Appl Microbiol Biotechnol 83(5), 791-798. https://doi.org/10.1007/s00253-009-2042-4

Publicado
2019-07-31
Cómo citar
Gómez Fierro, M. G., García Cárdenas, S. Y., Ruvalcaba Hidrogo, D. G., Alvarado González, C. C., Juárez Acosta, Óscar E., Espinoza Duarte, M. R., & Espino Solís, G. P. (2019). Comparación de la eficiencia de transformación entre diferentes cepas de E. coli: Comparison of transformation efficiency in different E. coli strains. TECNOCIENCIA Chihuahua, 13(2), 112-120. https://doi.org/10.54167/tch.v13i2.434