Metalofármacos en la terapia contra el cáncer

Metallopharmaceuticals in cancer therapy

Palabras clave: cancer, metalofármacos, cisplatino, relación estructura actividad, metales de transición

Resumen

Los metales con fines curativos se han utilizado desde las civilizaciones antiguas (china, egipcia, griega y romana). El cobre se usaba para esterilizar heridas, el oro para tratar la piel de las personas con viruela y la plata para curar heridas e infecciones. Actualmente, diversos compuestos inorgánicos se utilizan en el tratamiento de distintas enfermedades. Por ejemplo, algunas sales de aluminio, bismuto, calcio, magnesio y sodio se utilizan para los padecimientos estomacales. En cuanto al cáncer, el cisplatino fue el primer fármaco metálico utilizado en los tratamientos de quimioterapia. Además, se sabe que el trióxido de arsénico es un metalofármaco utilizado para tratar pacientes con leucemia. Incluso, otros metalofármacos a base de paladio y rutenio son excelentes agentes anticancerígenos activados por la luz que han sido aprobados en fases avanzadas de ensayos clínicos. Por lo tanto, el uso de metalofármacos en la terapia del cáncer se ha estudiado desde la década de 1960 hasta la actualidad. Durante este período, los científicos han buscado nuevos metalofármacos más eficaces, más selectivos y con menos efectos secundarios. Los esfuerzos han llevado a la consideración de una amplia variedad de metales en la tabla periódica, los cuales se discutirán en este artículo.

DOI: https://doi.org/10.54167/tch.v16i3.1010

Citas

Alessio E., Messori L. (2019) NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: A case story in medicinal inorganic chemistry, Molecules 24(10), 1995. https://doi.org/10.3390/molecules24101995

Aird, R. E., Cummings, J., Ritchie, A. A., Muir, M., Morris, R. E., Chen, H., Sadler, P. J. Jodrell, D.I. (2002) In vitro and in vivo activity and cross resistance profiles of novel ruthenium(II) organometallic arene complexes in human ovarian cancer, Brit. J. Cancer 86(10), 1652‒1657. https://doi.org/10.1038/sj.bjc.6600290

Antonarakis, E. S., Emadi, A. (2010) Ruthenium-based chemotherapeutics: Are they ready for prime time? Cancer Chemoth. Pharm. 66(1), 1‒9. https://doi.org/10.1007/s00280-010-1293-1

Bergamo, A., Masi, A., Dyson, P. J., Sava, G. (2008) Modulation of the metastatic progression of breast cancer with an organometallic ruthenium compound, Int. J. Oncol. 33(6), 1281‒1289. https://doi.org/10.3892/ijo_00000119

Bergamo, A., Masi, A., Peacock, A. F. A., Habtemariam, A., Sadler, P. J., Sava, G. (2010) In vivo tumour and metastasis reduction and in vitro effects on invasion assays of the ruthenium RM175 and osmium AFAP51 organometallics in the mammary cancer model, J. Inorg. Biochem. 104(1) 79‒86. https://doi.org/10.1016/j.jinorgbio.2009.10.005

Bose, S., Allen, A. E., Locasale, J. W. (2020) The molecular link from diet to cancer cell metabolism, Mol. Cell 78(6), 1034‒1044. https://doi.org/10.1016/j.molcel.2020.05.018

Brown, A., Kumar, S., Tchounwou, P. B. (2019) Cisplatin-based chemotherapy of human cancers, J. Cancer Sci. Ther. 11(4), 97. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059781/pdf/nihms-1032734.pdf

Chen, H., Parkinson, J. A., Morris, R. E., Sadler, P. J. (2003) Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms, J. Am. Chem. Soc. 125(1), 173‒186. https://doi.org/10.1021/ja027719m

Chitambar, C. R., Al-Gizawiy, M. M., Alhajala, H. S., Pechman, K. R., Wereley, J. P., Wujek, R., Clark, P. A. Kuo, J. S., Antholine, W. E., Schmainda, K. M. (2018) Gallium maltolate disrupts tumor iron metabolism and retards the growth of glioblastoma by inhibiting mitochondrial function and ribonucleotide reductase, Mol. Cancer Ther. 17(6), 1240‒1250. https://doi.org/10.1158/1535-7163.MCT-17-1009

Crawford, E. D., Saiers, J. H., Baker, L. H., Costanzi, J. H., Bukowski, R. M. Gallium nitrate in advances bladder carcinoma: Southwest oncology group study, Urology 38(4) (1991) 355‒357. https://doi.org/10.1016/0090-4295(91)80152-w

Dabrowiak, J. C. Platinum drugs for treating cancer. In: Metals in medicine, second ed., (Eds. Dabrowiak, J.C. Atwood, D. A., Meyer, G., Crabtree, R. H., Woollins, J. D.) Wiley-Blackwell, 2017, pp 91‒156. https://doi.org/10.1002/9781119191377.ch3

Dilruba, S. Kalayda, G. V. (2016) Platinum-based drugs: Past, present and future, Cancer Chemoth. Pharm. 77(6), 1103‒1124. https://doi.org/10.1007/s00280-016-2976-z

Erxleben, A., Claffey, J., Tacke, M. (2010) Binding and hydrolysis studies of antitumoural titanocene dichloride and Titanocene Y with phosphate diesters, J. Inorg. Biochem. 104(4), 390‒396. https://doi.org/10.1016/j.jinorgbio.2009.11.010

Fernández-Gallardo J., Elie B. T., Sadhukha T., Prabha S., Sanaú M., Rotenberg S. A., Ramos J. W. Contel M. (2015) Heterometallic titanium–gold complexes inhibit renal cancer cells in vitro and in vivo, Chem. Sci.; 6(9), 5269–5283. https://doi.org/10.1039/C5SC01753J

Galanski, M., Arion, V. B., Jakupec, M. A.; Keppler, B. K. (2003) Recent developments in the field of tumor-inhibiting metal complexes, Curr. Pharm. Des. 9(25), 2078‒2089. https://doi.org/10.2174/1381612033454180

Ganot, N., Briatbard, O., Gammal, A., Tam, J., Hochman, J., Tshuva, E. Y. (2018) In vivo anticancer activity of a nontoxic inert phenolato titanium complex: high efficacy on solid tumors alone and combined with platinum drugs, ChemMedChem 13(21), 2290‒2296. https://doi.org/10.1002/cmdc.201800551

Gómez-Ruiz, S. (2010) Evolución y desarrollo de complejos metálicos con aplicación potencial como agentes antitumorales, Ann. R. Soc. Esp. Quím. 106(1), 13‒21. https://dialnet.unirioja.es/servlet/articulo?codigo=3184655

Groessl, M., Tsybin, Y. O., Hartinger, C. G., Keppler, B. K., Dyson, P. J. (2010) Ruthenium versus platinum: Interactions of anticancer metallodrugs with duplex oligonucleotides characterised by electrospray ionisation mass spectrometry. J. Biol. Inorg. Chem. 15(5), 677‒688. https://doi.org/10.1007/s00775-010-0635-0

Gunatilleke, S. S., Barrios, A. M. (2008) Tuning the Au(I)-mediated inhibition of cathepsin B through ligand substitutions, J. Inorg. Biochem. 102(3), 555‒563. https://doi.org/10.1016/j.jinorgbio.2007.10.019

Hanusova, V., Skalova, L., Kralova, V., Matouskova, P. (2015) Potential anti-cancer drugs commonly used for other indications, Curr. Cancer Drug Tar. 15(1), 35‒52. https://doi.org/10.2174/1568009615666141229152812

Hernández-Romero, D., Rosete-Luna, S., López-Monteon, A., Chavez-Piña, A., Pérez-Hernández, N., Marroquín-Flores, J., Cruz-Navarro, J. A., Pesado-Gómez, G., Morales-Morales, D., Colorado-Peralta, R. (2021) First-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumor activity, Coordin. Chem. Rev. 439, 213930. https://doi.org/10.1016/j.ccr.2021.213930

Humphreys A. S., Filipovska A., Berners-Price S. J. , Koutsantonis G. A. , Skelton B. W. , White A. H. (2007) Gold(I) chloride adducts of 1,3-bis(di-2-pyridylphosphino)propane: synthesis, structural studies and antitumour activity, Dalton T. 4943–4950. https://doi.org/10.1039/B705008A

Johnstone, T. C., Suntharalingam, K., Lippard, S. J. (2016) The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs, Chem. Rev. 116(5), 3436‒3486. https://doi.org/10.1021/acs.chemrev.5b00597

Jungwirth, U., Gojo, J., Tuder, T., Walko, G., Holcmann, M., Schöfl, T. Nowikovsky, K., Wilfinger, N., Schoonhoven, S., Kowol, C. R., Lemmens-Gruber, R., Heffeter, P., Keppler, B. K., Berger, W. (2014) Calpain-mediated integrin deregulation as a novel mode of action for the anticancer gallium compound KP46, Mol. Cancer Ther. 13(10), 2436‒2449. https://doi.org/10.1158/1535-7163.MCT-14-0087

Kanwal, A., Saddique, F. A., Aslam, S., Ahmad, M., Zahoor, A. F., Mohsin, N.-A. (2018) Benzimidazole ring system as a privileged template for anticancer agents, Pharm. Chem. J + 51(12), 1068-1077. https://doi.org/10.1007/s11094-018-1742-4

Kartalou, M., Essigmann, J. M. (2001) Mechanisms of resistance to cisplatin, Mutat Res-Fund. Mol. M. 478(1‒2), 23‒43. https://doi.org/10.1016/s0027-5107(01)00141-5

Iacopetta D., Rosano C., Sirignano M., Mariconda A., Ceramella J., Ponassi M., Saturnino C., Sinicropi M. S., Longo P. (2020) Is the way to fight cancer paved with gold? Metal-based carbene complexes with multiple and fascinating biological features, Pharmaceuticals 13(5), 91. https://doi.org/10.3390/ph13050091

Lee, K. H., Hyun, M. S., Kim, H.-K., Jin, H. M., Yang, J., Song, H. S., Do, Y. R., Ryoo, H. M., Chung, J. S., Zang, D. Y., Do, Y. R., Ryoo, H. M., Chung, J. S., Zang, D. Y., Lim, H.-Y., Jin, J. Y., Yim, C. Y., Park, H. S., Kim, J. S., Sohn, C. H., Lee, S. N. (2009) Randomized, multicenter, phase III trial of heptaplatin 1-hour infusion and 5-fluorouracil combination chemotherapy comparing with cisplatin and 5-fluorouracil combination chemotherapy in patients with advanced gastric cancer, Cancer Res. Treat. 41(1), 12‒18. https://doi.org/10.4143/crt.2009.41.1.12

Lee, N., Spears, M. E., Carlisle, A. E., Kim, D. (2020) Endogenous toxic metabolites and implications in cancer therapy, Oncogene 39, 5709‒5720. https://doi.org/10.1038/s41388-020-01395-9

Lee, R. F. S., Escrig, S., Maclachlan, C., Knott, G. W., Meibom, A., Sava, G., Dyson, P. J. (2017) The differential distribution of RAPTA-T in non-invasive and invasive breast cancer cells correlates with its anti-invasive and anti-metastatic effects, Int. J. Mol. Sci. 18(9), 1869. https://doi.org/10.3390/ijms18091869

Li J., He X., Zou Y., Chen D., Yang L., Rao J., Chen H., Chan M. C. W., Li L., Guo Z., Zhang L. W., Chen, C. (2017) Mitochondria-targeted platinum(ii) complexes: dual inhibitory activities on tumor cell proliferation and migration/invasion via intracellular trafficking of β-catenin. Metallomics 9(6), 726–733. https://doi.org/10.1039/C6MT00188B

Liu, C., Liu, Z., Li, M., Li, X., Wong, Y.-S., Ngai, S.-M., Zheng, W., Zhang, Y., Chen, T. (2013) Enhancement of auranofin-induced apoptosis in MCF-7 human breast cells by selenocystine, a synergistic inhibitor of thioredoxin reductase, Plos One 8(1), e53945. https://doi.org/10.1371/journal.pone.0053945

Liu, J. J., Liu, Q., Wei, H. L., Yi, J., Zhao, H. S., Gao, L. P. (2011) Inhibition of thioredoxin reductase by auranofin induces apoptosis in adriamycin-resistant human K562 chronic myeloid leukemia cells, Pharmazie 66(6), 440‒444. https://pubmed.ncbi.nlm.nih.gov/21699084/

Malfetano, J. H., Blessing, J. A., Adelson, M. D. (1991) A phase II trial of gallium nitrate (NSC #15200) in previously treated ovarian carcinoma. A gynecologic oncology group study, Am. J. Clin. Oncol-Canc. 14(4), 349‒351. https://doi.org/10.1097/00000421-199108000-00015

Martínez-Jiménez, F., Muiños, F., Sentís, I., Deu-Pons, J., Reyes-Salazar, I., Arnedo-Pac, C., Mularoni, L., Pinch, O., Bonet, J., Kranas, H., González-Pérez, A., López-Bigas, N. (2020) A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555‒572. https://doi.org/10.1038/s41568-020-0290-x

McKeage, M. J. (2001) Lobaplatin: A new antitumour platinum drug, Expert Opin. Inv. Drug. 10(1), 119‒128. https://doi.org/10.1517/13543784.10.1.119

Meléndez, E. (2002) Titanium complexes in cancer treatment, Crit. Rev. Oncol. Hemat. 42(3), 309‒315. https://doi.org/10.1016/s1040-8428(01)00224-4

Newman, R. A., Brody, A. R., Krakoff, I. H. (1979) Gallium nitrate (NSC‐15200) induced toxicity in the rat. A pharmacologic, histopathologic and microanalytical investigation, Cancer 44(5), 1728‒1740. https://doi.org/10.1002/1097-0142(197911)44:5<1728::aid-cncr2820440529>3.0.co;2-s

Onodera, T., Momose, I., Kawada, M. (2019) Potential anticancer activity of auranofin, Chem. Pharm. Bull. 67(3), 186‒191. https://doi.org/10.1248/cpb.c18-00767

Paker, R. J., Eastman, A., Bostick-Bruton, F., Reed, E. (1991) Acquired cisplatin resistance in human ovarian cancer cells is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation, J. Clin. Invest. 87(3), 772‒777. https://doi.org/10.1172/JCI115080

Palermo, G., Magistrato, A., Riedel, T., von Erlach, T., Davey, C. A., Dyson, P. J., Rothlisberger, U. (2016) Fighting cancer with transition metal complexes: From naked DNA to protein and chromatin targeting strategies, ChemMedChem 11(12), 1199‒1210. https://doi.org/10.1002/cmdc.201500478

Pizarro, A. M., Sadler, P. J. (2009) Unusual binding modes for metal anticancer complexes, Biochimie 91(10), 1198‒1211. https://doi.org/10.1016/j.biochi.2009.03.017

Rackham O., Nichols S. J., Leedman P. J. , Berners-Price S. J. , Filipovska A. A. (2007) Gold(I) phosphine complex selectively induces apoptosis in breast cancer cells: implications for anticancer therapeutics targeted to mitochondria, Biochem. Pharmacol. 74(7), 992–1002. https://doi.org/10.1016/j.bcp.2007.07.022

Rademaker-Lakhai, J. M., van den Bongard, D., Pluim, D., Beijnen, J.H., Schellens, J.H.M. (2004) A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent, Clin. Cancer Res. 10(11) 3717‒3727. https://doi.org/10.1158/1078-0432.CCR-03-0746

Schilling, T., Keppler, K. B., Heim, M. E., Niebch, G., Dietzfelbinger, H., Rastetter, J., Hanauske, A.-R. (1996) Clinical phase I and pharmacokinetic trial of the new titanium complex budotitane, Invest. New Drug. 13(4), 327‒332. https://doi.org/10.1007/BF00873139

Sharma, R. A., Plummer, R., Stock, J. (2016) (on behalf of the NCRI CTRad academia-pharma joint working group). Clinical development of new drug–radiotherapy combinations. Nat. Rev. Clin. Oncol. 13, 627‒642. https://doi.org/10.1038/nrclinonc.2016.79

Shimada, M., Itamochi, H., Kigawa, J., (2013) Nedaplatin: A cisplatin derivative in cancer chemotherapy, Cancer Manag. Res. 5, 67‒76. https://doi.org/10.2147/CMAR.S35785

Shrivastava, N., Naim, M. J., Alam, M. J., Nawaz, F., Ahmed, S. Alam, O. (2017) Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure-activity relationship, Arch. Pharm. 350(6), e1700040 1‒80. https://doi.org/10.1002/ardp.201700040

Son, D.-S., Lee, E.-S. Adunyah, S. E. (2020) The antitumor potentials of benzimidazole anthelmintics as repurposing drugs, Immune Netw. 20(4), e29, 1‒20. https://doi.org/10.4110/in.2020.20.e29

Tarasov, V. V., Chubarev, V. N., Ashraf, G. M., Dostdar, S. A., Sokolov, A. V., Melnikova, T. I., Sologova, S. S., Grigorevskich, E. M., Makhmutovа, A., Kinzirsky, A. S., Klochkov, S. G., Aliev, G. (2019) How cancer cells resist chemotherapy: Design and development of drugs targeting protein-protein interactions, Curr. Top. Med. Chem. 19(6), 394‒412. https://doi.org/10.2174/1568026619666190305130141

Tian S., Siu F.-M., Kui S. C. F., Lok C.-N., Che C.-M. (2011) Anticancer gold(I)–phosphine complexes as potent autophagy-inducing agents, Chem. Commun. 47(33), 9318–9320. https://doi.org/10.1039/C1CC11820J

Trondl, R., Heffeter, P., Kowol, C. R., Jakupec, M. A., Berger, W., Keppler, B. K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application, Chem. Sci. 5(8), (2014) 2925‒2932. https://doi.org/10.1039/C3SC53243G

Valiahdi, S. M., Heffeter, P., Jakupec, M. A., Marculescu, R., Berger, W., Rappersberger, K., Keppler, B.K. (2009) The gallium complex KP46 exerts strong activity against primary explanted melanoma cells and induces apoptosis in melanoma cell lines, Melanoma Res. 19(5), 283‒293. https://doi.org/10.1097/CMR.0b013e32832b272d

Vonhoff, D. D., Schilsky, R., Reichert, C. M., Reddick, R. L, Rozencweig, M., Young, R. C., Muggia, F. M. (1979) Toxic effects of cis-dichlorodiammineplatinum(II) in man, Cancer Treat. Rep. 63(9‒10), 1527‒1531. https://pubmed.ncbi.nlm.nih.gov/387223/

Wang, D., Lippard, S. J. (2005) Cellular processing of platinum anticancer drugs, Nat. Rev. Drug. Discov. 4(4), 307‒320. https://doi.org/10.1038/nrd1691

Wang, J., Seebacher, N., Shi, H., Kan, Q., Duan, Z. (2017) Novel strategies to prevent the development of multidrug resistance (MDR) in cancer, Oncotarget 8(48), 84559‒84571. https://doi.org/10.18632/oncotarget.19187

Wang Y., Jin J., Shu L., Li T., Lu S., Subarkhan M.K.M., Chen C., Wang H. (2020) New organometallic ruthenium(II) compounds synergistically show cytotoxic, antimetastatic and antiangiogenic activities for the treatment of metastatic cancer. Chemistry, 26(66), 15170–15182. https://doi.org/10.1002/chem.202002970

Warrell Jr, R. P., Coonley, C. J., Straus, D. J., Young, C. W. (1983) Treatment of patients with advanced malignant lymphoma using gallium nitrate administered as a seven-day continuous infusion, Cancer 51(11), 1982‒1987. https://doi.org/10.1002/1097-0142(19830601)51:11<1982::aid-cncr2820511104>3.0.co;2-l

Wheate, N. J., Walker, S., Craig, G. E., Oun, R. (2010) The status of platinum anticancer drugs in the clinic and in clinical trials, Dalton T. 39(35), 8113‒8127. https://doi.org/10.1039/c0dt00292e

Yadav, S., Narasimhan, B., kaur, H. (2016) Perspectives of benzimidazole derivatives as anticancer agents in the new era, Anti-Cancer Agent. Med. Chem. 16(11), 1403‒1425. https://doi.org/10.2174/1871520616666151103113412

Publicado
2022-09-23
Cómo citar
Márquez López, E., Sánchez Pavón, E., Peña Rodríguez, R., Hernández Romero, D., Rivera Villanueva, J. M., Colorado Peralta, R., & Morales Morales, D. (2022). Metalofármacos en la terapia contra el cáncer : Metallopharmaceuticals in cancer therapy. TECNOCIENCIA Chihuahua, 16(3), e1010. https://doi.org/10.54167/tch.v16i3.1010