Ingeniería y Tecnología  
Artículo arbitrado  
Synthesis of an unconventional cationic  
surfactant precursor  
Síntesis del precursor de un surfactante catiónico  
no convencional  
1
,3  
1
KARLA LIZETTE TOVAR-CARRILLO , ROSA ALICIA SAUCEDO-ACUÑA , ALEJANDRO MARTÍNEZ-  
1
1,4  
2
MARTÍNEZ , FERNANDO PLENGE-TELLECHEA , ERASTO ARMANDO ZARAGOZA-CONTRERAS  
3
Y TAKAOMI KOBAYASHI  
Recibido: Agosto 23, 2010  
Aceptado: Noviembre 23, 2010  
Resumen  
Abstract  
Este trabajo consiste en el desarrollo de un precursor de  
surfactante catiónico no convencional empleando el método  
estándar de síntesis de éteres de Williamsom. Tratamos de  
diseñar un nuevo tipo de surfactantes heterogéminis con un  
espaciador rígido y grupos de cabeza no idénticos en la  
estructura del surfactante. En la síntesis sugerida establecemos  
el paso preliminar para la obtención un surfactante con dos  
anillos aromáticos como espaciador rígido. El precursor  
sintetizado proporciona a la estructura del surfactante un  
espaciador rígido debido a la presencia del grupo bifenilo,  
esperando que el surfactante presente una reducción tanto de  
la curvatura de los agregados micelares, así como de la  
concentración micelar crítica (CMC), en comparación con  
reportes previos, donde emplean surfactantes convencionales.  
Para establecer los pasos de la síntesis se varía la temperatura  
en el tiempo de reacción, así como la velocidad de adición del  
compuesto que contiene el grupo de cabeza, deseado que se  
pretende añadir a la estructura del surfactante propuesto. Para  
la caracterización se emplearon las técnicas de espectroscopia  
de infrarrojo (FT-IR) y resonancia magnética nuclear (RMN).  
The present research is about the development of a precursor  
of unconventional cationic surfactant by using the standard  
procedures of the Williamson ether synthesis. It has been  
intended to design a new type of heterogemini surfactant with  
a rigid spacer and non identical head groups in the structure of  
the surfactant. In the synthesis suggested, the preliminary step  
to obtain a surfactant structure with two aromatic rings as rigid  
spacer has been established. This synthesized precursor  
provides with a rigid spacer to the structure of the surfactant  
due to the presence of a biphenyl group; it is expected that,  
with this surfactant, it further presents a reduction on both the  
curvature of micellar aggregates as well as the Critical Micelle  
Concentration (CMC) in respect of those previous reports where  
conventional surfactants are used. To establish the steps of  
the synthesis, the temperature during the time of reaction has  
been varied, as well as the velocity of addition of the compound  
containing the head group which is pretended to be added to  
the surfactant structure proposed. For the characterization,  
the infrared spectroscopy technique (FT-IR) and the Nuclear  
Magnetic Resonance (NMR) were used.  
Palabras clave: surfactante, síntesis, precursor, CMC.  
Keywords: surfactants, synthesis, precursor, CMC.  
Introduction  
emini surfactants are a new kind of surfactants. They have amphiphiles composed of  
two identical hydrophobic chains linked with a spacer moiety at the two head groups,  
(
Menger et al., 1991). Since they have amphiphilic behaviour and form micelles, surface  
G
properties of Gemini surfactants were studied and described in several reviews (Borse et al., 2006).  
Many studies have shown that the spacer group has much effect on the properties of the solution in  
this kind of surfactants. In a comparison with ordinary monomeric surfactants, the CMC of the  
Gemini surfactants is considerably lower than ordinary surfactants.  
_
1
________________________________  
UACJ. Instituto de Ciencias Biomédicas. Ave. Anillo envolvente del Pronaf y Estocolmo S/N. Cd.Juárez, Chih.México  
CIMAV. Grupo de Polímeros. Miguel de Cervantes. Num. 120. Complejo Industrial Chihuahua, Chih. México  
Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan  
Dirección electrónica del autor de correspondencia: Fernando Plenge-Tellechea, fplenge@uacj.mx  
2
3
4
1
9
Vol. V, No. 1 • Enero-Abril 2011 •  
KARLA LIZETTE TOVAR-CARRILLO, ROSA ALICIA SAUCEDO-ACUÑA, ALEJANDRO MARTÍNEZ-MARTÍNEZ, FERNANDO PLENGE-TELLECHEA, ERASTO  
ARMANDO ZARAGOZA-CONTRERAS Y TAKAOMI KOBAYASHI: Synthesis of an unconventional cationic surfactant precursor  
A Gemini surfactant with two hydrocarbon  
chains and two hydrophilic head groups in a  
molecule is commonly known for exhibiting the  
following unusual properties: a CMC lower than  
one or two orders of magnitude, more efficiency  
in lowering the surface tension of water, the  
properties of the theoretical bases at a relatively  
low concentration, comparing with monomeric  
and ordinary surfactants. Most Gemini  
surfactants have a symmetrical structure  
comprising identical hydrocarbon chain lengths  
and hydrophilic regions. Our current area of  
interest is a new generation of Gemini  
surfactants, which would have better properties  
and unique characteristics in the adsorption and  
micellization process. In recent research,  
carried out with Gemini surfactants in which the  
head groups were chemically non identical,  
showed good surface-active properties, such as  
low CMC and high efficiency in lowering the  
surface tension, and aggregation behavior in the  
solution.  
molecular assemblies, called micelles. The  
formed micelles are of various types, shapes  
and sizes, such as globular, cylindrical and  
spherical (Maiti et al., 2000). The characteristics  
of these aggregates are governed by the  
molecular structure and the conditions of the  
solution of the surfactant, in addition to physical  
parameters (Borse et al., 2006). In recent years,  
several researchers designed newer molecular  
structures of surfactants with greater surface  
activity; these molecules were called bis-  
surfactants, later, they were called «gemini»  
surfactants (Menger et al., 2000; Oda et al.,  
2001). This kind of surfactants is considerably  
more surface active than the conventional  
surfactants called «monomeric» surfactants (Li  
et al., 1991; Rosen et al., 1994), the difference  
stems from the structure of a conventional  
surfactant has a single hydrophobic tail  
connected to an ionic group or polar head group,  
whereas a gemini surfactant has in a sequence  
a hydrocarbon chain, an ionic group, a spacer,  
a second ionic group and another hydrocarbon  
tail (Zana et al, 1995; Menger et al., 2001). The  
spacer can be formed of different natures such  
as short or flexible chains as methylene groups,  
rigid as stilbene, polar as polyether, and non polar  
as aliphatic or aromatic groups (Bunton et al.,  
A new family of materials based on  
unconventional structure of surfactants is  
undergoing an exploration in several laboratories.  
These surfactants present a different structure  
from the surfactants named geminis. The  
resulting materials can be self-assembled into  
both side-chain-like polymers (Edlund et al.,  
1
971). The ionic groups can be positive as  
ammonium or negative as phosphate. The  
majority of geminis have symmetrical structures  
with two identical polar groups and two identical  
chains.  
1996). The most recent research on surfactants  
are focused in obtaining high-performance on  
areas of high-technology such as electronics,  
printing, magnetic recording, biotechnology and  
microelectronics (Lee et al., 1995).  
Moreover, some unsymmetrical geminis and  
geminis with three or more polar groups or tails  
have been recently reported. One type of these  
unsymmetrical geminis is the bis-quaternary  
surfactants with a general molecular formula  
C H N+(CH ) – (CH )-N+(CH ) C H2n+1, 2Br-  
Although cationic surfactant complies with  
only a small portion of the market, its importance  
in practical applications continues to grow. It is  
used as antibacterial, liquid crystals, gene  
transfection agents, in road repairs, for reactions  
and in preparation of crystalline mesoporous  
materials (Esumi et al., 1998).  
n
2n+1  
3 2  
2
3 2  
n
and are referred as m-s-m DMA (DMA = dimethyl  
ammonium bromide) surfactants (Srivastava et  
al., 1998; Deacon et al., 2003). These surfactants  
possess unique properties in their solution such  
as very low critical micellar concentration (CMC),  
high detergency, high solubilization and high  
surface wetting capability; these properties give  
them a wide range of applications in diverse areas  
Conventional surfactants molecules are  
generally composed of two parts: one polar head  
and one alkyl chain, incompatible with one  
another. They are known for their tendency to  
complete self-association and to develop super  
2
0
• Vol. V, No. 1 • Enero-Abril 2011 •  
KARLA LIZETTE TOVAR-CARRILLO, ROSA ALICIA SAUCEDO-ACUÑA, ALEJANDRO MARTÍNEZ-MARTÍNEZ, FERNANDO PLENGE-TELLECHEA, ERASTO  
ARMANDO ZARAGOZA-CONTRERAS Y TAKAOMI KOBAYASHI: Synthesis of an unconventional cationic surfactant precursor  
such as mining, petroleum, chemical,  
pharmaceutical industries, and biochemical  
research. They are also used as preservatives  
during the refluxing of the wise drop solution, and  
the refluxing continued for 72 h; the synthesis  
scheme is shown in Figure 1. The amount of  
products was registered after changing the time  
and temperature of reaction, as well as the velocity  
in which the compound contained the head group  
of the surfactant.  
(Bakshi et al., 2005), anticorrosive (Koopal et al.,  
1995; Sharma et al., 2005) and antimicrobial  
agents (Menger et al., 1991).  
In the early 1990s, (Menger et al., 1991), the  
term gemini was assigned to these bis-  
surfactants that have a rigid spacer such as  
benzene or stilbene. The term was, then,  
extended to other bis or double tailed surfactants,  
irrespective of the nature of the spacer.  
Furthermore, it was examined the effect of the  
heterocyclic head group and the acetylenic  
spacer on the aggregation properties of cationic  
geminis (Menger et al., 2000). Surfactants  
containing rigid hydrophobic groups are also  
called unconventional surfactants. The synthesis  
and behavior of these surfactants have been  
widely reported, however, the use of this new  
amphiphiles in the synthesis of polymers through  
heterogeneous polymerization techniques  
Most of the bi-substituted product was  
precipitated during this time and was collected after  
the mixture cooled at 2°C. The remaining solution  
contained most of the mono-substituted product.  
HCl concentrated was added to this solution, upon  
which an emulsion was formed. The emulsion was  
stirred for 30 min and then filtered and washed  
with water three times. The resulting white paste  
was dried at 80°C during three days. The dried  
paste was stirred for 20 min in chloroform and then  
filtered five times (during this step, the entire mono-  
substituted product was removed from the white  
paste), and re-crystallized.  
In the second step, two equivalents of KOH  
reagent (Baker) were dissolved into dry methanol,  
to give a 5% (v/v) solution. The mono-substituted  
product was added, and a clear colorless solution  
was obtained on refluxing. An equivalent of 1,6-  
dibromopentane was added all at once to the  
refluxing solution. The refluxing continued for 72  
h after overnight refluxing, the bi-substituted  
product precipitated; as a result, the volume of  
the mixture was reduced. The resulting  
precipitated product was collected and washed  
with 99.55% (v/v) of ethanol.  
(
emulsion or mini-emulsion) has been hardly  
studied (Zaragoza et al., 2003). It has been  
recently reported that this surfactants can be  
used as potential gene delivery agents. Due to  
this application, the number of research on the  
molecular structure and their effect on solution  
of these surfactants have been increased today  
because these compounds offer an important  
tool for different fields as biotechnology,  
biochemistry, genetics, and molecular biology.  
The aim of this work and its originality establish  
the preliminary step of an unconventional cationic  
surfactant synthesis, with a rigid spacer structure  
provided from the molecule of bisphenol.  
Figure 1. Scheme of unconventional cationic surfactant  
precursor synthesis. A, B, C and D are important steps carried  
out on the synthesis previously described.  
Materials and Methods  
Synthesis. The precursor of this surfactant  
was prepared in two steps, by using the standard  
procedures of the Williamson ether synthesis  
(Brandys et al., 1996). In the first step, the starting  
reactant, 4,4’-bisphenol 97% (Aldrich), was  
neutralized with two equivalent of 5% (p/v) sodium  
solution 3-8 mm spheres (Aldrich) in water. 1  
equivalent of 1-bromopentane 99% (Aldrich) was  
dissolved separately in 99.5% ethanol and added  
2
1
Vol. V, No. 1 • Enero-Abril 2011 •  
KARLA LIZETTE TOVAR-CARRILLO, ROSA ALICIA SAUCEDO-ACUÑA, ALEJANDRO MARTÍNEZ-MARTÍNEZ, FERNANDO PLENGE-TELLECHEA, ERASTO  
ARMANDO ZARAGOZA-CONTRERAS Y TAKAOMI KOBAYASHI: Synthesis of an unconventional cationic surfactant precursor  
Figure 2. Summary of the amount of compound obtained when  
the reaction temperature was varying.  
Analysis. By using the infrared  
spectroscopy equipment Perkin Elmer brand  
GXATR model, infrared spectra were obtained.  
The 1H NMR spectra were obtained by JNM  
GX400 FT-MNR.  
Results and Discussion  
Synthesis. To establish the optimum  
conditions to synthesize the mentioned  
surfactant, it was necessary to evaluate the  
effects of the reaction temperature, reaction  
time, and the adding velocity of the compound,  
which are going to give the head group to the  
structure of the surfactant. The analysis of these  
conditions was based on the impact of the  
amount of synthesized product. To analyze the  
effect of change in the conditions of the reaction,  
the amount of the obtained compound during  
the synthesis was registered and the interaction  
between the conditions was examined. The  
obtained data on the references suggested a  
starting temperature of 70ˆC, due to this result,  
the effect of the temperature was analyzed firstly  
Another experiments show the summary of  
the amount of compound in grams obtained  
when the time reaction was varying (Figure 3).  
If the reaction time is less than 48 h the amount  
of compound decreases and the un-reacted  
reactant amount increases. If the reaction time  
is more than 48 h the amount of compound does  
not change.  
Figure 3. Summary of the amount of compound obtained when  
the time reaction was varying.  
(Bradys and Bazuin. 1998).  
A summary of the results obtained in the  
experiments is shown below, only with the  
variation in the reaction temperature (Figure 2).  
The amount of compound did not change at  
higher temperatures than 120°C. However, at  
lower temperatures than 90°C, the amount of  
compound decreases significantly. This  
phenomenon could happen because at lower  
temperature it is more difficult for the  
molecules of bisphenol to be out of phase when  
a molecule of a reactant is attached, and more  
time available makes possible the substitution  
of the second -OH bond on the molecule,  
decreasing the amount of mono substituted  
compound, which is needed for the surfactant  
structure proposed.  
Through the bisphenol has two -OH bounds  
which can participate in the reaction and the  
main point is obtained the substitution of only  
one group, it was expected that decreasing the  
velocity in which the reactant is adding into the  
reaction the amount of mono-substituted  
compound will increase. For this, the adding  
velocity of the reactant was analyzed. It was  
found that, when the adding velocity decreases  
the amount of compound increases significantly.  
This might be, because the number of the  
molecules in the reactant is lower than the  
molecules of the bisphenol available, increasing  
the possibility of reaction of only one -OH bond  
with the reactant. On the other hand, if the adding  
First of all, the effect of the temperature  
was analyzed as well as the reaction time,  
leaving constant the temperature at which the  
maximum of compound was obtained. The  
minimum time reaction was taken from  
references (Bradys and Bazuin. 1998).  
2
2
• Vol. V, No. 1 • Enero-Abril 2011 •  
KARLA LIZETTE TOVAR-CARRILLO, ROSA ALICIA SAUCEDO-ACUÑA, ALEJANDRO MARTÍNEZ-MARTÍNEZ, FERNANDO PLENGE-TELLECHEA, ERASTO  
ARMANDO ZARAGOZA-CONTRERAS Y TAKAOMI KOBAYASHI: Synthesis of an unconventional cationic surfactant precursor  
velocity increases the opposite effect is obtained,  
since the number of molecules in the reactant  
increases and the second -OH bond can be  
easily substituted (Figure 4).  
The results during the infrared spectra of  
the substitute compound by only one hydroxyl  
-
group (Figure 6) show a region near to 3300 cm  
1
representing a free hydroxyl group of the  
molecule. Aromatic C-H stretching bands occur  
between 3100 and 3000 cm . Skeletal vibrations  
Figure 4. Summary of the amount of compound obtained when  
the adding velocity was varying.  
-1  
involving carbon-carbon stretching within the  
ring, absorb in the 1600-1585 and 1500-1400  
-
1
cm  
Figure 6. Infrared spectra analyzed at room temperature of  
substitute compound by only one hydroxyl group.  
Infrared Analysis. The obtained products  
were filtered and dried to analyze them with  
infrared spectroscopy. The two important areas  
for preliminary analysis of infrared spectra are  
-
1
the regions at 4000 – 1300 and 900 – 650 cm .  
Figure 5 shows the spectra of the starting  
reactant. This spectrum has illustrated important  
infrared bands, which are very important for the  
synthesis. The non-hydrogen-bonded or free  
hydroxyl group of alcohols and phenols absorbs  
The decrease of the intensity of the infrared  
-
1
strongly around 3500 cm region. The C-O  
stretching vibrations in phenols produce a strong  
-
1
spectrum around 3300 cm of the starting  
reactant, was caused by the substitution of a  
hydroxyl group of the molecule. Bands near to  
-
1
band in the 1200 – 1000 cm region of the  
spectrum. The C-O stretching mode is coupled  
with the adjacent C-C stretching vibration. The  
-1  
930 cm are attributed to bonds C-O-C of the  
2
nucleophilic substitution between the starting  
reactant and 1-bromoalcane.  
-
1
regions around 1580, 1494, 1100 and 900 cm  
are typically of bisphenoles compounds.  
-1  
The infrared bands near to 1494 cm involve  
the next non-aromatic bonds: C-C and C-H.  
Figure 5. Infrared spectra at room temperature of the starting  
reagent 4,4’-bisphenol.  
-
1
What is more, the region around 809 cm is  
caused by the substitution of the 4,4-bisphenol;  
the figure 2 shows a low intensity variation  
caused by these groups on the molecule. Finally,  
the appearance of the infrared band near to 590  
-
1
cm involves stretching C-C and C-H bonds that  
confirm the substitution on the molecule of  
bisphenol bond to C-O. This suggest that the  
interaction of C-O bonding out-of-plane with C-  
C stretching and the C-H of the aliphatic chain  
as result of the substitution of the molecule of  
bisphenol, to analyze the spectrum regions near  
2
3
Vol. V, No. 1 • Enero-Abril 2011 •  
KARLA LIZETTE TOVAR-CARRILLO, ROSA ALICIA SAUCEDO-ACUÑA, ALEJANDRO MARTÍNEZ-MARTÍNEZ, FERNANDO PLENGE-TELLECHEA, ERASTO  
ARMANDO ZARAGOZA-CONTRERAS Y TAKAOMI KOBAYASHI: Synthesis of an unconventional cationic surfactant precursor  
-
1
to 2930, 1490, 809 and 509 cm reported (Zhao  
et al., 2007). This experiment also shows the  
infrared spectra of the sub- product in the first  
part of the synthesis (Figure 6). In this spectrum  
it can be appreciated an increase in the intensity  
Infrared spectra in figure 7 are similar to  
infrared spectra in figure 3, due to the aliphatic  
chains in the molecule of bisphenol. The region  
near to 2900-2800 represents the stretching C-  
H of the aromatic ring, and typical stretching  
bands C-O-C of aril ester compounds. The band  
-
1
of the infrared band near to 2940 cm (Figure  
), in which the C-O-C stretching bonding was  
involved. This increase is caused by the  
elimination of the molecule of bisphenol free  
hydroxyl groups forming bonds C-O-C.  
-
1
3
near to 1600 cm is attributed to the stretching  
C=C of the aromatic ring, infrared bands close  
-
1
to 1500 cm are attributed to aliphatic chains  
bonding to the compounds of bisphenol.  
-
1
On the other hand, the increase in the  
intensity of the infrared band near to 1490 cm  
is attributed to the growing interaction between  
the C-C and the C-H bonds of the aliphatic chain  
with the molecule of bisphenol shown in Figure  
The region near to 1300-1200 cm shows  
the stretching C-O out-of-plane, this band  
increases its intensity shown in the spectrum  
-
1
-
1
of figure 3. Bands around 1100 cm are  
attributed to the stretching C-H in-the-plane  
of the aromatic ring, like in the infrared  
spectrum (Figure 3). The most important  
difference between the spectrum in figure 3  
and the one shown in figure 4 is the decrease  
5
, through the elimination of another free  
hydroxyl group within the molecule.  
Another region that support the bi-  
substitution of the molecule of bisphenol, is the  
appearance of the infrared bands near to 1034  
-
1
of the bands near to 700 – 500 cm , due to  
the difference of the aliphatic chain added to  
the molecule of bisphenol (Chorro et al.,  
1998).  
-
1
cm , that involves stretching C-O-C bonding to  
asymmetric C-O of the compound.  
Furthermore, the intensity of the infrared band  
-
1
near to 825 cm is attributed to the bi-  
substitution of the 4,4-bisphenol for aliphatic  
chains, which intensity shows a low intensity due  
to the deference of the groups bonding to the  
molecule of bisphenol. To conclude, the increase  
NMR analysis. The obtained products were  
filtered and re-crystallized twice with diluted  
ethanol, as a result, 1H NMR spectra by JNM  
GX400 FT-MNR was obtained.  
-
1
Figure 8. 1H NMR spectra of the substitute compound by only  
of the infrared band near to 590 cm is attributed  
to the stretching of the C-C and the C-H of the  
aliphatic chains bonding to the C-O out-of-plane  
of the bi-substitute molecule.  
one hydroxyl group.  
Figure 7. Infrared spectra analyzed at room temperature of  
substitute compound, substitution of the free hydroxyl groups.  
Figure 8 shows the 1H NMR spectra of the  
obtained compound during the first part on the  
2
4
• Vol. V, No. 1 • Enero-Abril 2011 •  
KARLA LIZETTE TOVAR-CARRILLO, ROSA ALICIA SAUCEDO-ACUÑA, ALEJANDRO MARTÍNEZ-MARTÍNEZ, FERNANDO PLENGE-TELLECHEA, ERASTO  
ARMANDO ZARAGOZA-CONTRERAS Y TAKAOMI KOBAYASHI: Synthesis of an unconventional cationic surfactant precursor  
synthesis of the surfactant. These spectra  
show that the analyzed compound has the  
number of hydrogen expected for the molecule  
in the first part of the synthesis. This spectrum  
also shows that the substitutions of the carbons  
that form the chemical structure of the  
compound are also the expected on the  
structure of the substitute compound by only  
one hydroxyl group during the synthesis  
References  
BAKSHI, M. S., J. Singh, and G. Kaur. 2005. Antagonistic mixing  
behavior of cationic Gemini surfactants and triblock polymers  
in mixed micelles. Journal of colloid and Interface Science  
285: 403-412.  
BORSE, M. S., and S. Devi. 2006. Importance of head group polarity  
in controlling aggregation properties of cationic Gemini  
surfactans. Advances in Colloid and Interface Science  
1
23:387-399.  
BRANDYS, F. A., and C. Bazuin. 1996. Mixtures of an Acid-  
functionalized mesogen with poly (4-vinylpyridine). Chemical  
Mater 8: 83-92.  
(
Qiuging et al., 2008).  
BUNTON, C. A., L. Robinson, J. Schaak, and M. Stern. 1971.  
Catalysis of nucleophilic substitutions by micelles of dicationic  
detergents. Journal of Organic Chemical 36: 2346-2350.  
CANDAU, S.J., and R. Oda. 2001. Linear viscoelasticity of salt-  
free wormlike micellar solutions. Colloids and Surface A:  
Physicochemical and Engineering Aspects 183-185:5-14.  
CARLSSON, I., H. Edlund, G. Persson, B. Lindstrom. 1996.  
Competition between monovalent and divalent counterions in  
surfactant systems. Journal of Colloid and Interface Sciences  
Conclusions  
It is possible to obtain an unconventional  
cationic surfactant precursor with rigid spacer  
by the Williamson ether synthesis.  
The reaction temperature has an important  
effect in the amount of precursor obtained. The  
most significantly effect of the synthesis was  
the variation of the adding velocity of the alkyl  
bromide, the maximum amount of precursor  
was obtained when the adding velocity  
decreased.  
1
80: 598-604.  
CHORRO, C., M. Chorro, O. Dolladille, S. Partyka, and R. Zana.  
998. Adsorption of Dimeric (gemini) surfactants at the  
1
aqueous solution/silica interface. Journal of Colloid and  
Interface Science 199: 169-176.  
DEACON, P,, N. Devylder, I. Hill, M. Mahon, K. Molloya, and G. Price.  
2
003. Organo compounds bearing mesogenic sidechains:  
synthesis, X-ray structures and polymerization chemistry.  
Journal of Organometallic Chemistry 687: 46-56.  
ESUMI, K.,. A. Toyoda, M. Goino, T. Suhara, H. Fukui, and Y Koide.  
Due to the presence of hydroxyl groups in  
the molecule of bisphenol, the formation of bi-  
substitute product is easily observed. It is  
possible that the initial reagent molecule  
became out of phase in order to facilitate the  
reaction of one hydroxyl group, without the  
presence of several second reaction products,  
allowing the substitution on only one -OH bond  
in the bisphenol structure.  
1
998. Adsorption characterization of cationic surfactants on  
titanium dioxide with quaternary ammonium groups and their  
adsolubilization. Journal of Colloid and Interface Science 202:  
3
77-384  
KOOPAL, L., E. Lee,and M. Bohmer. 1995. Adsorption of cationic  
and anionic surfactants on charged metal oxide surfaces.  
Journall of Colloid and Interface Science 170: 85-97  
LEE, Y., and K. Woo. 1995. Micellization of aqueous cationic  
surfactant solutions at the micellar structure transition  
concentration-based upon the concept of the pseudophase  
separation. Journal of Colloid and Interface Science 169: 34-  
38.  
LI, M., H. Fu, M. Yang, H. Zheng, Y. He, H. Chen, and X. Li. 2005.  
Micellar effect of cationic Gemini surfactant on organic/  
aqueous biphasic catalytic hydroformylation of 1-dodecene.  
Journal of Molecular Catalysis A: Chemical 235: 130-136.  
MAITI, S., and P. Chatterji. 2000. Aggregation and polymerization  
of amphiphilic macromonomers with a double bond at the  
hydrophilic terminal. Journal of Colloid and Interface Science  
Regarding the summary, we conclude that  
the reaction conditions to obtain an 80% of  
product in the first part of the synthesis are a  
temperature of around 85°C, reaction time of  
48 h and one drop added each 5 s. The reaction  
232: 273-281  
conditions to obtain 80% from the second part  
of the synthesis are a temperature above 100°C,  
and a reaction time of 48 h.  
MENGER, F. M., and C. Littau.1991. Gemini-surfactants:synthesis  
and properties. Journal of American Chemical Society 113:  
1
MENGER, F. M., J. Keiper, and V. Azov. 2000. Gemini surfactants  
with acetylenic spacers. Langmuir 16: 2062-2067.  
MENGER, F. M., J. Keiper, B. Mbadugha, K. Caran, and L. Romsted.  
451-1459.  
Acknowledges  
2
000. Interfacial composition of gemini surfactant micelles  
To Manuel Roman for technical support.  
Promep Consolidation Fund for Academic  
Groups, UACJ 2009.  
determined by chemical trapping. Laugmuir 16:9095-9098.  
MENGER, F. M.,and B. Mbadugha. 2001.Gemini surfactants with a  
disaccharide spacer. Journal of American Chemical Society  
183: 875-885.  
2
5
Vol. V, No. 1 • Enero-Abril 2011 •  
KARLA LIZETTE TOVAR-CARRILLO, ROSA ALICIA SAUCEDO-ACUÑA, ALEJANDRO MARTÍNEZ-MARTÍNEZ, FERNANDO PLENGE-TELLECHEA, ERASTO  
ARMANDO ZARAGOZA-CONTRERAS Y TAKAOMI KOBAYASHI: Synthesis of an unconventional cationic surfactant precursor  
ROSA, M., M. Moran, M. Miguel, and B. Lindman. 2007. The association  
of DNA and stable cationic amino acid-based vesicles. Colloids  
and surface A: Engineering Aspects 301: 361-375.  
QIUGING, Y., Z. Qiong, and P. Somasundaran. 2008.NMR study of  
micellar microstructures of cationic single-chain and Gemini  
surfactants and their mixtures with nonionic surfactant.  
Colloids and SurfaceA: Physicochemical EngineeringAspects  
SRIVASTAVA, S.K., and S. Raghumani. 1998. Micellar reaction of  
rosaniline hydrochloride carbocations with cyanide and  
applications of positive cooperativity model of enzyme  
catalysis. Journal of Surface Sciences Technology. 48:48-  
54.  
ZANA R, H. Levy, D. Papoutsi y G. Beinert. 1995. Micellization of  
two triquaternary ammonium surfactants in aqueous solution.  
Langmuir 11:3694-3698.  
322: 40-46.  
ROSEN, M. 1993. Geminis: A new generation of surfactants.  
Chemtech 23: 30-33.  
ZHAO, J., S. Deng, J. Liu, C. Lin, and O. Zheng. 2007. Fourier  
transform infrared investigation on the state of water in  
reverse micelles of quaternary ammonium Gemini surfactants  
C12-s-C12.2Br in n-heptene. Journal of Colloid and Interface  
Science 311: 237-242.  
ZARAGOZA, E.A, and D. Navarro. 2003. On the role of an  
unconventional rigid rodlike cationic surfactant on the styrene  
emulsion polymerization. Kinetics, particle size and particle  
size distribution. Polymer 44: 5541-5546.  
ROSEN, M., J. Gao,Y. Nakatsuji, andA. Masuyama. 1994.Synergism  
in binary mixtures of surfactants. Mixtures containing  
surfactants with two hydrophilic and two or three  
hydrophobic groups. Colloids Surfaces A: Physicochemical  
and Engineering Aspects 88: 1-11.  
SHARMA, V., M. Borse, S. Jauhari, K. Pai, and S. Devi. 2005. New  
hydroxylated cationic gemini surfactants as effective  
corrosion inhibitors for mild steel in hydrochloric acid medium.  
Tenside Surfactants Detergent 42:163-167.  
Este artículo es citado así:  
Tovar-Carrillo, K. L., R.A. Saucedo-Acuña, A. Martínez-Martínez, F. Plenge-Tellechea, E. A. Zaragoza-  
Contreras and T. Kobayashi. 2011: Synthesis of an unconventional cationic surfactant precursor.  
TECNOCIENCIA Chihuahua 5(1): 19-26.  
Resúmenes curriculares de autor y coautores  
KARLA LIZETTE TOVAR CARRILLO. Miembro de la UACJ desde 2005, actualmente estudiante de doctorado de Nagaoka University of  
Technology, ha sido profesor de química y auxiliar de laboratorio de química. Ha trabajado en el desarrollo de materiales con fines  
biomédicos de 2007 a la fecha, contribuyendo a la obtención y caracterización de los mismos. Ha participado en 6 proyectos de  
investigación y tiene 7 publicaciones en revistas nacionales e internacionales.  
ROSA ALICIA SAUCEDO ACUÑA. Miembro del Instituto de Ciencias Biomédicas de la UACJ, trabaja en el desarrollo y adecuación de  
materiales con fines biomédicos, contribuyendo con el desarrollo de dos matrices poliméricas que han regenerado con éxito tejido  
adiposo y muscular en murinos. Es miembro fundador del Consorcio JAP-MEX-USA, miembro del SNI y del CAEC de Diagnóstico  
Molecular de la UACJ.  
ALEJANDRO MARTÍNEZ MARTÍNEZ. Tiene una amplia trayectoria en bioquímica y neurociencias. Es miembro de la Sociedad Mexicana de  
Bioquímica AC, y de la American Society of Neurosciences. En 1991 obtuvo la licenciatura en Biología en la Universidad de  
Guadalajara (UDG). Obtuvo el grado de Maestría en Neuroquímica en el Departamento de Química de la UNAM en 1994. En 1997,  
culminó sus estudios de Doctorado en Biología en la Universidad de Murcia, España. Realizó varias estancias académicas de  
posgrado, entre las que destacan su postdoctorado en la Universidad de California en San Diego (Irving), con una beca de la  
fundación hispana PEW, culminando en el 2003. El mismo año, ingresó como Profesor Investigador de tiempo completo a la  
Universidad Autónoma de Ciudad Juárez. Cuenta con múltiples publicaciones y capítulos de libros, así como dirección individual de  
tesis de pregrado y de grado. Imparte cátedra de ingeniería genética en el programa de química y bioinformática en la Maestría en  
Ciencias con orientación en genómica (PNP) y Maestría en Ciencias Químico- Biológicas (PNP).  
LUIS FERNANDO PLENGE TELLECHEA. Desde 1990 ingresó como becario interno del laboratorio de reproducción en la Facultad de Ciencias  
de la Universidad Autónoma de Baja California. En 1992 culminó sus estudios de Biología en la misma dependencia. Posteriormente  
realizó sus estudios de Doctorado en Ciencias Biológicas por la Universidad de Murcia, culminando en 1998. El Dr. Plenge se ha  
caracterizado por sus estudios bioquímicos en la rama de proteínas asociadas en membranas. Actualmente labora como profesor  
investigador de tiempo completo en la Universidad Autónoma de Ciudad Juárez. Cuenta con múltiples publicaciones y dirección de  
tesis de pregrado y de grado. Es actual director en jefe de la revista de ciencias, Ciencia en la Frontera, e imparte la cátedra de  
Bioquímica en el programa de Biología y de Estructura y función proteínas en la Maestría en Ciencias con orientación en genómica  
(PNP). Actualmente se encuentra en una estancia Posdoctoral en el Border Biomedical Research de la Universidad de Texas en El  
Paso desde 2010 al presente, estudiando mecanismos bioquímicos de neurotransportadores.  
TAKAOMI KOBAYASHI. Miembro del Departamento de Química de la Nagaoka University of Technology. Ha recibido el premio al mejor  
investigador joven en polímeros de Japón, actualmente es presidente del Consorcio JAP-MEX-USA. Su área de investigación es  
el desarrollo de materiales poliméricos. Entre los logros más recientes de su equipo de colaboradores es el desarrollo de una nueva  
técnica de impresión molecular en la preparación de membranas porosas.  
2
6
• Vol. V, No. 1 • Enero-Abril 2011 •