Medio Ambiente y Desarrollo Sustentable  
Artículo arbitrado  
Medical Geology: Its Relevance to Mexico  
Geología Médica: su relevancia para México  
1
2
3,4  
MARÍA AURORA ARMIENTA , ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS  
Recibido: Enero 7, 2013  
Aceptado: Febrero 28, 2013  
Abstract  
Resumen  
Interest in medical geology issues is rapidly expanding around  
the world. The objective of this paper is to highlight medical  
geology issues in Mexico and to discuss the importance of natural  
resources and its relation to human and animal health. Three  
Mexico´s zones are discussed; North, Central and Western. In  
addition, two main concerns are addressed; the arsenic and the  
flouride levels in ground water. These two trace elements along  
with others such as uranium and radon are elements that pose  
a serious threat to human health. The last part is dedicated to  
Chihuahua where arsenic, fluorine, uranium and radon coming  
from geogenic or anthropogenic sources present a serious threat  
to humans. The authors hope to encourage students and  
professors to participate and engage in medical geology  
conferences and events in order to improve their knowledge on  
this topic as well as to improve the health of Mexican citizens  
and people all over the world.  
El concepto y la importancia del estudio de la geología médica  
está creciendo alrededor del mundo. El objetivo de este trabajo  
es discutir la importancia de diversos aspectos de geología  
médica en México y señalar la relacion de los recursos naturales  
con la salud humana y animal. Se discuten tres grandes  
regiones del país: la región norte, la región central y la región  
oeste.Además, se analizan dos preocupaciones fundamentales:  
el arsénico y el flúor. Estos dos elementos, junto con otros  
como el uranio y radón son elementos que potencialmente  
representan una amenaza a la salud humana en el país. La  
última parte del análisis se enfoca en el estado de Chihuahua,  
que es el más grande de México, y donde el arsénico, flúor,  
uranio y radón, presentes ya sea de fuentes naturales  
(geogénicas) o antropogénicas, representan una seria amenaza  
a la salud humana. Los autores desean motivar tanto a  
estudiantes como profesores a participar e involucrarse en el  
tema de la geología médica con el fin de ahondar en sus diferentes  
aspectos y, como consecuencia, mejorar la salud de los  
habitantes de México y del mundo.  
Keywords: human health, environmental human threat, arsenic,  
fluorine, uranium, radon.  
Palabras clave: salud humana, amenaza, arsénico, flúor,  
uranio, radón.  
Introduction  
f you have never heard the term Medical Geology you are not alone. Most people,  
even many scientists, have not heard of the term. Yet medical geology is a field  
of knowledge whose roots go back millions of years and whose impacts affect  
I
just about everyone on the planet.  
_
1
________________________________  
Universidad Nacional Autónoma de México. Instituto de Geofísica. Circuito Exterior, C.U. México D.F., 04510, México.  
University of Texas at Dallas, Richardson, TX 75083, United States of America.  
Universidad Autónoma de Chihuahua. Facultad de Zootecnia y Ecología. Periférico Francisco R. Almada, Km. 1, Chihuahua, Chih.,  
Mexico. 31453.  
2
3
4
Dirección electrónica del autor de correspondencia: rubioa1105@hotmail.com.  
1
52  
 Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
Medical geology is the science dealing with  
the impacts of the natural environment (geologic  
materials and geologic processes) on animal  
and human health. It is concerned with exposure  
to naturally occurring trace elements, minerals  
in ambient dust and organic compounds in  
water and in the atmosphere. Medical geologists  
study volcanoes, earthquakes, and other natural  
phenomena to determine how these activities  
impact health. Medical geology is a discipline  
that links environmental science, public health,  
and geoscience in an effort to better understand  
these issues so that their impacts on public  
health can be minimized or even eliminated.  
Dissanayake and Chandrajith; and Medical  
Geology:ARegional Synthesis, 2010, edited by  
Selinus et al. that contains a chapter on medical  
geology issues in Mexico, Central America and  
the Caribbean (Armienta et al., 2010). Several  
local and regional organizations have been  
formed including the International Medical  
GeologyAssociation (www.medicalgeology.org)  
which, presently, has a regional chapter in  
Mexico and the Geological Society ofAmerica’s  
Geology and Health Division (http://  
rock.geosociety.org/GeoHealth/index.html). In  
addition, it is important to mention that more than  
5,000 people have attended the 50 Medical  
Geology short courses presented in more than  
As long as 2 million years ago humanoids  
used minerals to settle upset stomachs likely  
counteracting the effects of eating rotten fruits  
and meats (Abrahams, 2005). Certainly long  
before that humanoids were aware of the  
potential dangers from volcanic activity and  
drinking water from certain natural sources.  
Many ancient civilizations were aware of various  
ways that rocks, minerals, water, and dust could  
impact human health. Their scientists and  
philosophers produced treatises warning  
readers of these dangers or recommending the  
use of specific rocks and mineral to counteract  
various diseases. Much of the valuable  
knowledge of these ancient indigenous peoples  
have been ignored by modern society or  
irretrievably lost.  
3
0 countries. In Mexico, courses in this series  
were presented in Piedras Negras (1995) and  
Mexico City (1997). Medical Geology short  
courses were also given in San Luis Potosi  
(2007) and, most recently (2011 and 2013), at  
the UniversidadAutónoma de Chihuahua.  
In this paper, we provide examples of the  
recent and ongoing medical geology research  
in Mexico. We hope that these examples will  
adequately demonstrate the significance of  
medical geology health issues and illustrate the  
opportunities that exist for students and  
researchers to engage in the growing field of  
medical geology.  
Examples of Medical Geology  
Studies in México (Figure 1)  
Despite this long history and the widespread  
and sometimes severe health impacts, the  
science of medical geology is relatively new.  
During this past decade there has been a  
resurgence of interest in this field that has led to  
active research projects in many parts of the  
world including Mexico and the development of  
a support structure for those active or interested  
in the field. A number of useful medical geology  
books have been produced in the past few years  
including: Geology and Health 2003, edited by  
Skinner and Berger; Essentials of Medical  
Geology, 2005, edited by Selinus et al. (note: a  
new edition will be published in late 2012);  
Introduction to Medical Geology, 2009, by  
Arsenic (As) and fluorine (F) are important  
elements in México from the perspective of  
medical geology. Their health impacts have  
resulted mainly from drinking of naturally  
contaminated groundwater. High fluoride  
groundwater concentrations have been detected  
in many areas of the country; many of them  
coincide with arsenic contaminated zones.  
Estupiñán-Day et al. (2005) considered that  
about 4 million people live in natural fluoride-rich  
zones and are at risk from dental and skeletal  
fluorosis (Figure 2). This is particularly important  
since groundwater is the main drinking water  
source in México especially in the Northern part  
1
53  
Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
Figure 1. Location of studied zones. 1) Comarca Lagunera, 2)  
Hermosillo, Sonora 3) Mexicali, Baja California, 4) Chihuahua,  
Chihuahua, 5) Aguascalientes, Aguascalientes, 6) Acámbaro,  
where arid and semiarid ecosystems are  
common. Indeed, endemic fluorosis was  
considered as an unrecognized environmental  
health problem in México in 1997 (Díaz-Barriga  
et al., 1997). A meeting of the National  
Commission of Water and the Ministry of Health  
of Mexico (Comisión Nacional del Agua,  
Secretaría de Salud), the Panamerican Health  
Organization, and the U. S. Center for Disease  
Control and Prevention was held in 2004 to deal  
with fluoride occurrence and fluorosis in México  
and recommend alternatives to protect the  
population. The states ofAguascalientes, Sonora,  
Zacatecas, San Luis Potosí, Baja California and  
Durango were identified as having the highest  
prevalence of fluorosis.Areview on dental fluorosis  
in México was written by Soto-Rojas et al. (2004).  
One of the measures to diminish the population  
exposure was to prohibit selling fluoridated salt  
Guanajuato, 7) Tequisquiapan, Qurétaro, 8) Guadiana Valley,  
Durango, 9) Zimapán, Hidalgo, 10) San Luis Potosí, San Luis  
Potosí, 11) San Ramón, Zacatecas.  
(the salt type offered regularly throughout the  
country) in fluoride-enriched areas.  
Distribution of Medical Geology  
Problems in Northern México  
Arsenic-related health problems due to  
ingestion of arsenic-rich water were first  
identified around 1958 in the Comarca Lagunera  
region, in northern México; about 400,000 people  
were considered at risk at that time. VariousAs-  
enriched groundwater zones have been  
identified since then, in different parts of the  
country. Studies have been conducted to assess  
As concentrations, distribution, and, most  
recently, As sources. Natural arsenic presence  
in groundwater has been mainly related to its  
release from As-bearing minerals, geothermal  
processes, water interaction with volcanic rocks,  
clays and Fe-oxyhydroxides as well as  
evaporation (Armienta and Segovia, 2008).  
Epidemiological studies to determine the actual  
effects of chronic As ingestion have also been  
carried out in some of those areas. These  
effects include hyperkeratosis, hyper and  
hypopigmentation, and blackfoot disease  
One of the most studied zones of the  
country in the field of medical geology has been  
the Comarca Lagunera (Figure 1). In this zone,  
which includes the southwest part of Coahuila  
and the northeast part of Durango states, health  
problems such as kerathosis, skin pigmentation  
and black foot disease resulting from chronic  
As intake were detected in 1958 (Cebrian et al.,  
1
994). Groundwater containing up to 0.718 mg  
-1  
L was identified as the source of exposure (Del  
Razo et al., 1990; Rosas et al.,1999; Molina,  
2
004). The Mexican drinking water standard for  
-1  
arsenic is 0.025 mg L (NOM-127-SSA1-1994,  
000). Several research projects in this area  
2
have been conducted to unravel theAs origin in  
groundwater, including geological, hydro-  
geological, and geochemical aspects together  
with hydrogeological and geochemical modeling.  
According to those studies As originated from  
one or several of the following processes:  
hydrothermal activity, desorption from clays,  
dissolution and desorption from Fe and Mn  
oxides, evaporation, and oxidation of sulfides  
(González-Hita et al., 1991; Ortega-Guerrero,  
(
Figure 2). Examples of these studies are  
included below. Arsenic presence (up to 0.12  
-
1
mg L ) in groundwater has been ascribed to  
sulfide oxidation (Mahlknecht et al., 2004) and  
volcanic rocks dissolution in the fractured aquifer  
(Ortega-Guerrero, 2009).  
1
54  
 Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
2
003; Molina, 2004; Gutiérrez-Ojeda, 2009).  
water (Wyatt et al., 1988a). Bearing in mind the  
absence of possible anthropogenic sources of  
As, its presence was considered to result from  
natural processes.Analyses of urine in exposed  
population at the town of Esperanza in Sonora  
Ingestion of As consumption through cooked  
food was also revealed as an important source  
of the contaminant to the inhabitants in the  
Comarca Lagunera area (Del Razo et al., 2002).  
Research has also been conducted to relate As  
exposure with health. Del Razo et al. (1997)  
found relationship betweenAs speciation in urine  
and signs of dermatological affectations.  
Gonsebatt et al. (1997) observed a significant  
increase in micronuclei of urinary and oral  
epithelial cells of exposed people as well as an  
increase in the frequency of chromatide  
deletions, isochromatides in lymphocytes.  
Coronado-González et al. (2007) detected a  
relation between diabetes and total As  
concentrations in urine. Rosales-Castillo et al.  
-
1
showed a geometric mean of 65.1 mg L As  
corresponding to a mean As intake of 65.5 mg  
-
1
day .Apositive correlation betweenAs in urine,  
As intake and As in water was also found in  
Hermosillo, Sonora (Wyatt et al., 1998b; Meza  
et al., 2004). Besides, at Hermosillo, As  
concentrations in groundwater correlated with  
those of fluoride (Wyatt et al.,1998b).  
-1  
Fluoride, from 1.5 to 5.67 mg L was  
reported in groundwater of the Guadiana valley  
in Durango. Nearly 95% of the population was  
considered to be exposed to concentrations  
(2004) found an increase of cancer incidence  
-1  
above 2.0 mg L which is higher than the  
with As exposure (Armienta et al., 2010;  
Camacho et al., 2011).  
-1  
Mexican drinking water standard of 1.5 mg L  
(
NOM-127-SSA1-1994, 2000). These people  
The presence of high concentrations of  
exhibited dental fluorosis and increased bone  
fractures and children showed a positive  
correlation between dental fluorosis and fluoride  
in drinking water (Ortiz et al.,1998; Alarcón-  
Herrera et al., 2001)  
-
1
fluoride (up to 3.7 mg L ) in groundwater in As  
contaminated areas has also been reported at  
Comarca Lagunera (Del Razo et al.,1993).  
Figure 2. Fluorosis evidence in a Mexican patient.  
Radon is another natural health threat  
causing increased lung cancer risk and linked  
to alpha radiation exposure from radon in air.  
High radon concentrations may occur in certain  
geologic environments. Radon-in-soil levels up  
-
3
to 500 kBq m were measured in a uranium-  
rich zone in Sonora (Segovia et al., 2007;  
Armienta et al., 2010). Reyna-Carranza and  
López-Badilla (2002) determined indoor radon  
concentrations in 95 houses of Baja California  
(Figure 1). They found a higher number of deaths  
in neighbourhoods without pavement in  
comparison to those paved, as well as a higher  
number of women deaths relative to men. These  
researchers explain their results due to the  
longer time spent in the home by women. Radon  
concentrations were also higher at homes  
where a lung cancer death had occurred.  
In Sonora (Figure 1) studies of arsenic and  
fluoride in groundwater and population health  
-
1
have also been carried out. Up to 0.305 mg L  
As was measured in wells and storage tanks in  
990; however, concentrations decreased  
afterwards due to dilution with uncontaminated  
In Chihuahua, arsenic levels from 0.006 to  
-
1
1
0.474 mg L in 35 sampled locations were  
measured in 2004 (Junta Central de Agua y  
1
55  
Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
Saneamiento, 2006). In addition to other health  
problems that have been identified and studied  
in this State.  
2001; Sracek et al., 2010). Contaminated water  
flows through fractures, and As concentration  
is influenced by rainy periods (Rodríguez et al.,  
2
004). Health effects due to As exposure  
Central México  
observed in this area, include dermatological  
affectations (hyper- and hypo-pigmentation,  
hyperkerathosis), and increment of transforming  
growth factor alpha (TGF-) levels in bladder  
urothelial cells (Armienta et al., 1997b; Resendiz  
and Zúñiga, 2003; Valenzuela et al., 2007).  
In Aguascalientes (Figure 1), estimation of  
cancer risk due to ingestion of As in water  
-
1
(
1
average 0.0145 mg L ) was 9.5 cases per  
00,000 inhabitants for the lower water As  
content, and 1.63 cases per 1000 inhabitants  
for the highestAs concentration (Trejo-Vázquez  
and Bonilla-Petriciolet, 2002). Fluoride (up to 4  
For many years drinking water for Zimapán  
was only supplied from this contaminated  
limestone aquifer. At present, As levels have  
decreased as a result of mixing with low-As  
water delivered from another area and the  
instalation of a treatment plant to remove As.  
However, as is commonly found at other  
historical mining zones, wastes from ore  
processing polluted shallow wells that fortunately  
are not used as drinking water sources.  
-
1
mg L ) in water supply produced from  
groundwater interaction with igneous rocks was  
reported by Rodríguez et al. (1997).  
In Guanajuato (Figure 1), various studies  
attempting to explain the occurrence and health  
affectations of arsenic have been carried out.  
Arsenic was present in drinking water wells  
(CODEREG, 2000; ESF, 2006; Rodríguez et al.,  
2
006; Martínez-García, 2007; Armienta et al.,  
The adverse influence of mining residues  
on health was investigated in San Luis Potosí  
where high concentrations of Pb and As were  
measured in water, soils and sediments (Castro-  
Larragoitia et al., 1997, Razo et al., 2004).  
Children showed increased DNA damage  
(Yáñez et al., 2003) after. Bioaccessible  
concentrations of As and Pb also showed they  
were exposed to concentrations above the  
maximum criteria (Gamiño and Monroy, 2009).  
2010). Fluoride is also present in Guanajuato.  
Dental fluorosis was observed in Irapuato and  
Salamanca where groundwater fluoride  
-1  
concentrations varied from 1 to 3 mg L (Ovalle,  
996; Rodríguez et al., 2000, 2006). Occurrence  
1
of fluorosis has also been reported in other cities  
within Guanajuato (Fragoso et al., 1997;  
Armienta et al., 2010). In the Independence  
-
1
aquifer in northeast Guanajuato up to 16 mg L  
of fluoride were measured and related to the  
presence of acid volcanic rocks (Mahlknecht et  
al., 2004). Dental fluorosis resulting from tainted  
water ingestion was also reported in Querétaro  
In San Luis Potosí (Figure 1), widespread  
fluorosis from groundwater tainted intake has  
been known for decades. Various studies to  
determine the source and geochemical  
processes responsible for concentrations above  
drinking water standards have been conducted  
for many years (Carrillo and Armienta, 1989;  
Carrillo-Rivera et al.,1996, 2002). Fluoride is  
released from the deep volcanic aquifer and  
transported through fractures in the regional  
groundwater flow. Health studies showed a  
correlation between dental fluorosis and drinking  
water fluoride concentrations in this state and  
in Aguascalientes (Trejo-Vázquez and Bonilla-  
Petriciolet, 2002). Children showed neuro-  
toxicological effects as a result of enriched  
(Sánchez-García et al., 2004).  
Mineralization is an important source of  
fluoride and arsenic in Mexican groundwater.  
Medical geology studies have been conducted  
for many years at the mining zone of Zimapán,  
in Hidalgo (Figure 1) to determine concen-  
trations, distribution and origin of As in  
groundwater and related health effects. Arsenic  
presence has mainly been linked to dissolution  
of arsenic minerals, mainly arsenopyrite which  
is widely distributed in the mineralized zones of  
the limestone aquifer (Armienta et al., 1997a,  
1
56  
 Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
fluoride water intake (Estupiñán-Day et al.,  
005). Groundwater contamination by As in  
Zacatecas (Figure 1) was also reported with  
levels up to 0.5 mg L (Leal-Ascencio and  
Gelover-Santiago 2006; Armienta et al., 2010).  
part having elevations ranging from 2,000 to  
2,400 meters above sea level (masl) and with  
mainly settlements of rural villages. The central  
part of the state is characterized by rangeland  
valleys known as Chihuahua´s great plains, with  
elevations from 1,500 to 2,000 masl. This area  
is dominated by short grass communities where  
most human settlement can be observed. Lastly,  
the eastern area is characterized by an arid  
environment where the precipitation is below 200  
mm per year presenting shrub land communities  
and elevations from 850 to 1,500 masl. Each of  
these three main environments in the State of  
Chihuahua exhibits contrasting geology and  
human health issues that we highlight in this  
review. It is important to point out that  
groundwater is the main hydrological resource  
for drinking water supply.  
2
-
1
Figure 3. Hyperkeratosis from ingestion of As-polluted water.  
Chihuahua´s Natural Resources-Water  
The most important watershed in the State  
is associated with the Conchos River which is  
the main river about 560 km in length. This river  
originates in the municipality of Bocoyna which  
is located in the upper part of the Tarahumara  
region, flows through Chihuahua´s great plains,  
and joins the Rio Grande/Rio Bravo in a very  
arid zone. It is important to point out that the  
Conchos River is the major tributary of the Rio  
Grande/Rio Bravo and there has been evidence  
that the water in the upper part of the river is  
uncontaminated (Rubio et al., 2004). In contrast,  
there is strong support of water contamination,  
to different degree, in the central part (Gutiérrez  
and Borrego, 1999; Gutiérrez et al., 2008; Rubio-  
Arias et al., 2011) as well as in the lower part of  
the river before joining the Rio Bravo-Rio Grande  
Western México  
-
1
Fluoride (up to 17.77 mg L ) has been  
measured in Jalisco (Figure 1). Geothermal  
processes may be linked with its presence. In  
addition, arsenic is also higher than the drinking  
water standard in this area with up to 0.263 mg  
-1  
L . Fluoride concentrations represent a potential  
risk of dental and skeletal fluorosis. Furthermore,  
skin diseases, gastrointestinal effects,  
neurological damage, cardiovascular problems,  
and hematological effects constitute potential  
health effects from chronic arsenic exposure  
(
2
Hurtado-Jiménez and Gardea-Torresdey, 2005,  
006).  
In Nayarit mean concentrations of arsenic  
in drinking water provided from three wells were  
(Holguín et al., 2006; Rubio-Arias et al., 2012)  
-
1
below Mexican standards (0.025 mg L ) but  
above WHO limits (0.010 mg L ) (Mora-Bueno  
et al., 2012).  
that represents a potential health risk for local  
residents. Other aquatic ecosystems in the state  
have been detected as contaminated such as  
the Laguna de Bustillos (Rubio et al., 2004),  
which in turn, is negatively affecting range and  
crop land (Rubio et al., 2006).  
-
1
Medical Geology issues in Chihuahua  
The state of Chihuahua is the largest state  
in Mexico and has three main geological  
environments. The mountain areas known as  
the Tarahumara region is located in the western  
It is well confirmed that aquifers can become  
contaminated from different elements leaching  
from urban and rural wastewater (Squillace et  
1
57  
Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
al., 2002) or could contain higher levels of  
potentially toxic trace elements because of  
natural cycling. Espino et al. (2007) reported that  
drinking water samples from wells in the central  
related to arsenopyrite, ascendant geothermal  
flow, and high evaporation. Reverse osmosis is  
currently used to remove As and other toxic  
elements in Chihuahua (Espino-Valdés et al.,  
2009; Camacho et al., 2011). In fact, about 88  
small reverse osmosis treatment plants, partially  
paid by the consumers were reported to be in  
operation in 2006 (Calderón-Fernández, 2006).  
-
1
part of the state exceeded the level of 10 mg L  
N-NO , established by NOM-127-SSA1-1997  
3
(
2000) This study is important when it is  
observed that in the central part of the state there  
are many human settlements that depends  
There are 50 uraniferous areas in the state  
of Chihuahua; the most important is Sierra  
Blanca which contains about 60% of Mexico´s  
uranium reserves (Villalba et al., 2011). In fact,  
about 30 years ago there was established a  
uranium milling process causing a significant  
natural hazard. Villalba et al. (2011) reported  
high levels of uranium in water samples with  
1
00% on the water coming from wells and  
where less than 50% of the localities have a  
demineralization treatment system (JCAS,  
2
006). High levels of nitrate in drinking water  
have been associated with different diseases  
Gulis et al., 2002; Volkner et al., 2005) and in  
(
particular with the blue baby syndrome. The  
Chihuahua´s nitrate problem has also been  
detected in the north (Martinez-Rodriguez et al.,  
-1  
levels in a range of 0.38 to 1.39 Bq L . These  
concentrations are above the maximum levels  
established for the U.S. Environmental  
Protection Agency (EPA) which specify a  
2006) as well in the south where Rubio et al.  
(
2004) noted level of nitrate as high as 10.53  
-1  
mg L in surface water of the Florido River which  
is a tributary of the Conchos River.  
-1  
maximum level of 0.78 Bq L . In addition, these  
researchers found high levels of radio and radon  
in the water samples of the communities of  
Aldama and the city of Chihuahua which is  
higher than those values reported in the EPA  
levels. In Aldama levels of radon in indoor air  
samples were reported in a range from 29 to  
The presence of arsenic in water through  
natural and anthropogenic sources represents  
another important issue in Chihuahua.  
Camacho et al. (2011) detected high As  
concentrations in groundwater while Rubio et  
al. (2004) presented data on high levels of this  
metalloid in surface water of the Conchos River.  
At present, there is no information about water  
consumption patterns in Mexico, nor in  
Chihuahua, and the local communities or  
owners of private wells are not required to control  
the As level, or even other contaminants, from  
their drinking and cooking water. This is important  
when it is considered that Chihuahua has about  
-
3
422 Bq m (Colmenero et al., 2004) which are  
higher than values established in international  
norms. The authors estimated an annual  
effective dose of 3.0 mSv which is higher than  
the average international norms of 1.2 mSv.  
Final Remarks  
Different alternatives have been given to  
Medical Geology problems in some areas of  
México. Mixing of poor quality water with good  
quality water has been a widespread option to  
decrease the contaminant levels. Highly polluted  
wells have been closed and substituted by safe-  
water wells or surface water in some places.  
Household filters were distributed in some As  
polluted areas. Studies have been carried out to  
develop new affordable treatment methods.  
These treatment developments, which offer a  
promising option to remove As and other  
contaminants, deserve a special review.  
1
3,000 wells in the State and some of them are  
utilized for the families in different activities (CFE,  
011).  
Volcanic rocks and lacustrine sediments  
2
were proposed as sources of groundwater As  
in different zones of Chihuahua (Reyes Cortés  
et al., 2006a, 2006b; Mahlknecht et al., 2008). In  
the Delicias–Meoqui and Jimenez–Camargo  
aquifers 50% of the wells were reported with As  
-
1
concentrations higher than 0.05 mg L  
Camacho et al., 2011). Arsenic has been  
(
1
58  
 Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
CAMACHO, L. M., M. Gutierrez, M.T.Alarcon-Herrera, M.L. S. Deng.  
However, many problems are still waiting for  
2
011. Occurrence and treatment of arsenic in groundwater  
solutions. Much is still to be done in México;  
regular analyses of the most common  
contaminants: fluoride and arsenic, must be  
done in every drinking water source.  
Laboratories must be provided with the  
adequate analytical equipment to perform these  
determinations nationwide. Treatment systems  
must be installed in every place where the  
presence of arsenic and fluoride concentrations  
are higher than drinking water standards.  
Affordable and environmental-sustainable  
methods suitable for every contaminated  
location should be promoted by joining efforts  
between researchers and authorities.  
Maintenance of current treatment systems  
and soil in northern Mexico and southwestern USA.  
Chemosphere 83(3): 211-225.  
CARRILLO, J.J., M.A. Armienta. 1989. Diferenciación de la  
Contaminación Inorgánica en las aguas Subterráneas del Valle  
de la Ciudad de San Luis Potosí, SLP, México. Geofísica  
Internacional 28(4):763-783.  
CARRILLO-RIVERA, J.J., A. Cardona, D. Moss. 1996. Importance of  
the vertical component of groundwater flow:  
a
hydrogeochemical approach in the valley of San Luis Potosí,  
Mexico. Journal of Hydrology 23:23-44  
CARRILLO-RIVERA, J.J., A. Cardona, W.M. Edmunds. 2002. Use of  
abstraction regime and knowledge of hydrogeological  
conditions to control high-fluoride concentration in asbtracted  
groundwater: San Luis Potosí Basin, Mexico. Journal of  
Hydrology 261:24-47  
CASTRO-LARRAGOITIA, J., U. Kramar, H. Puchelt. 1997. 200 years of  
mining activities at La Paz/San Luis Potosi/Mexico -  
Consequences for environment and geochemical exploration.  
Journal of Geochemical Exploration 58:81-91  
CEBRIÁN, M.E.,A.Albores, G. García-Vargas, L.M. Del Razo. 1994.  
Chronic arsenic poisoning in humans: the case of Mexico. In:  
J.O.Nriagu (ed.) Arsenic in the Environment, Part II, John  
Wiley & Sons Inc, N.Y. p. 93-107.  
CFE, 2011. Comisión Federal de Electricidad. Chihuahua,  
Chihuahua, México. Datos de la Comisión Federal de  
Electricidad. Comunicacion personal.  
CODEREG. 2000. Acuífero de la Independencia, municipios de  
San José Iturbide, Doctor Mora, San Luis de la Paz, Dolores  
Hidalgo, San Felipe, San Diego de la Unión y San Miguel de  
Allende, Guanajuato. Technical Report inedit. Consejo para el  
Desarrollo Regional Noreste y Norte, Guanajuato.  
COLMENERO, S.L., C.M.E. Montero, L. Villalba, V.M. Renteria, M.E.  
Torres, L.M. Garcia, R. Garcia-Tenorio, G.F. Mireles, P.E.F.  
Herrera, A.D. Sanchez. 2004. Uranium-238 and thorium-232  
series concentrations in soil, radon-222 indoor and drinking  
water concentrations and dose assessment in the city of  
Aldama, Chihuahua, Mexico. Journal of Environmental  
Radioactivity 77(2):205-219.  
(
household or municipal) must always be  
included as a priority in municipal expense  
programs and supported by all authority levels.  
Overall, population health must be placed in the  
first in priority of national and local authorities.  
References  
ABRAHAMS, P.W. 2005. Geophagy and the involuntary ingestion of  
soil. In: O. Selinus, B.Alloway, R. J.A. Centeno, R.B. Finkelman,  
R. Fulke, U. Lindh, and P. Smedley (eds.). Essentials of Medical  
Geology. Elsevier, New Cork p.435-458.  
ALARCÓN-HERRERA, M.T., I.R. Martín-Domínguez, R. Trejo-Vázquez,  
S. Rodríguez-Dosal. 2001. Well water fluoride, dental fluorosis,  
bone fractures in the Guadiana Valley of Mexico. Fluoride,  
34:139–149.  
ARMIENTA, M.A., R. Rodríguez, A. Aguayo, N. Ceniceros, G.  
Villaseñor, O. Cruz. 1997a. Arsenic contamination of  
groundwater at Zimapán, México. Hydrogeology Journal 5:  
CORONADO-GONZÁLEZ, J.A., L.M. Del Razo, G. García-Vargas, F.  
Sanmiguel-Salazar, J. Escobedo-de la Peña.2007. Inorganic  
arsenic exposure and type 2 diabetes mellitus in Mexico.  
Environmental Research 104:383-389.  
3
9-46  
ARMIENTA, M.A., R. Rodríguez, O. Cruz. 1997b.Arsenic Content in  
Hair of People Exposed to Natural Arsenic Polluted  
Groundwater at Zimapán, México. Bulletin of Environmental  
Contamination and Toxicology 59:583-589.  
DEL RAZO, L.M., M.A. Arellano, M.E. Cebrián. 1990. The oxidation  
states of arsenic in well-water from a chronic arsenicism area  
of northern Mexico. Environmental Pollution 64:143-153.  
DEL RAZO, L.M., J.C. Corona, G. García-Vargas, A. Albores, M.E.  
Cebrián. 1993. Fluoride levels in well-water from a chronic  
arsenicism area of northern Mexico. Environmental Pollution  
80:91-94  
DEL RAZO, L.M., G.G. Garcia-Vargas, H. Vargas, A. Albores, M.E.  
Gonsebatt, R. Montero, P. Ostrosky-Wegman, M. Kelsh, M.E.  
Cebrián. 1997. Altered profile of urinary arsenic metabolites  
in adults with chronic arsenicism. A pilot study. Archives of  
Toxicology. 71:211-217  
ARMIENTA, M.A., G. Villaseñor, R. Rodríguez, L.K. Ongley, H. Mango.  
2
001. The role of arsenic bearing rocks in groundwater  
pollution at Zimapán Valley, México. Environmental Geology  
0:571-581.  
4
ARMIENTA, M.A., N. Segovia. 2008. Arsenic and fluoride in the  
groundwater of Mexico. Environmental Geochemistry and  
Health 30:345-353  
ARMIENTA, M. A., R. Rodriguez, N. Segovia, and M. Monteil, M.  
2
010. Medical geology in Mexico, Central America and the  
Caribbean. In: O. Selinus, R. B. Finkelman, and J. A. Centeno  
eds.). Medical Geology: A Regional Synthesis. Springer,  
DEL RAZO L. M., G.G. Garcia-Vargas, J. García-Salcedo, M.F.  
Sanmiguel, M. Rivera, M.C. Hernandez, M.E. Cebrian. 2002.  
Arsenic levels in cooked food and assessment of adult dietary  
intake of arsenic in the Region Lagunera, Mexico. Food and  
Chemical Toxicology, 40, 1423–1431.  
DIAZ-BARRIGA, F., A. Navarro-Quezada, M.I. Grijalva, M. Grimaldo,  
J.P. Loyola-Rodriguez, M. Deogracias Ortiz. 1997. Endemic  
fluorosis in Mexico, Fluoride 30(4): 233-239.  
(
Dordrecht p. 59-78.  
CALDERÓN-FERNÁNDEZ, M.L. 2006. Alternativas de depuración de  
agua para consumo humano en el estado de Chihuahua. Junta  
Central de Agua y Saneamiento de Chihuahua. Documentos  
Foro Mundial del Agua. México, D.F.  
1
59  
Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
ESF. 2006. Well water quality in San Miguel de Allende. Phase I:  
Results and Conclusions. Ecosystem Sciences Foundation,  
ESF, San Miguel deAllende Municipality. Technical Report inedit,  
Guanuajuato  
ESPINO, M.S.,A.H. Rubio, C.J. Navarro, C.J. 2007. Nitrate pollution  
in the Delicias-Meoqui aquifer of Chihuahua, Mexico. In: C.A.  
Brebbia (ed.). Environmental Health Risk IV. WitPress.  
Ashurst Southampton. P.189-196.  
JCAS. 2006. Junta Central de Aguas y Saneamiento del Estado  
de Chihuahua (JCAS). Comunicacion personal.  
LEAL-ASCENCIO, M.T., S. Gelover-Santiago. 2006. Evaluación de  
acuíferos de la mesa del norte. In: Memorias V Congreso  
Internacional y XI Congreso Nacional de CienciasAmbientales,  
7-9 de junio, 2006, Oaxtepec, Mor., México.  
MAHLKNECHT, J., B. Steinich, I. Navarro. 2004. Groundwater  
chemistry and mass transfers in the Independence aquifer,  
central Mexico, by using multivariate statics and mass-balance  
models. Environmental Geology 45:781-795.  
MAHLKNECHT, A. Horst, G. Hernández-Limón, R. Aravena. 2008.  
Groundwater geochemistry of the Chihuahua City region in  
the Rio Conchos Basin (northern Mexico) and implications for  
water resources Management. Hydrological Processses  
22:4736–4751  
MARTÍNEZ, P., M. García. 2007. Distribución de iones mayores y  
metales en el agua subterránea de la subcuenca del Río Turbio,  
estados de Guanajuato y Jalisco. Revista Geociencia 1:37-54.  
MARTINEZ-RODRIGUEZ, J. G., Z. Castellanos, G.M. Rivera, H.G. Nuñez,  
C.R. Faz. 2006. Contaminacion por nitratos en acuíferos del  
norte de Mexico y del estado de Guanajuato. Agrofaz 6(3):  
379-388.  
MEZA M.M., M. Kopplin, J.L. Burges, J. Gandolfi. 2004. Arsenic  
drinking water exposure and urinary excretion among adults  
in the Yaqui Valley, Sonora, Mexico. Environmental Research  
96:119-126  
MOLINA, M.A. 2004. Estudio hidrogeoquímico en la Comarca  
Lagunera, México .M. Sc. Thesis, Posgrado en Ciencias de la  
Tierra. Universidad NacionalAutónoma de México, México D.F.  
MORA-BUENO, D., L.C. Sánchez-Peña, L.M. Del Razo, C.A. González-  
Arias, I.A. Medina, -Díaz, M.L. Robledo-Marenco, A.E. Rojas-  
García. 2012. Presencia de arsénico y coliformes en agua  
potable del municipio de Tecuala, Nayarit, México. Revista  
Internacional de Contaminación Ambiental 28:127-135.  
NOM-127-SSA1-1994. 2000. Modificación a la Norma Oficial  
Mexicana. Salud ambiental.Agua para uso y consumo humano.  
Límites permisibles de calidad y tratamientos a que debe  
someterse el agua para su potabilización. DOF 22 de  
noviembre de 2000.  
ESPINO-VALDES, M.S., Y. Barrera-Prieto, E. Herrera-Peraza. 2009.  
Arsenic presence in North section of Meoqui-Delicias aquifer  
of state of Chihuahua, Mexico. Tecnociencia Chihuahua 3  
(
1), 8–18.  
ESTUPIÑÁN-DAY, S., H. Vera, K. Duchon. 2005. Final Report «Task-  
Force Meeting» Defluoridation systems in Latin America and  
the Caribbean, Washington D.C., 22-24 October, 2004.  
Comisión Nacional del Agua, Secretaría de Salud de México,  
PanAmerican Health Organization, WHO, Washington D.C.  
FRAGOSO, R., G. Jackson V. Cuairan, L. Gaitan. 1997. Efectividad  
del ácido clorhídrico como blanqueador dental en piezas con  
fluorosis dental. Revista ADM 54: 219-222.  
GAMIÑO, S.P., M. Monroy. 2009. Evaluation of children exposition  
and effect biomarkers in a mining site with high concentration  
of arsenic and lead bioaccesibility as a case study for  
abandoned sites associated to Pb-Zn-Cu-Ag skarn deposits  
in Central Mexico. In: Geological Society ofAmerica Abstracts  
with Programs, 16-17 March Dallas, TX, USA. 41(2):13.  
GONSEBATT, M.E., L. Vega, A.M. Salazar, R. Montero, P. Guzmán,  
J. Blas, L.M. Del Razo, G. García-Vargas, A. Albores, M.E.  
Cebrián, M. Kelsh, P. Ostrosky-Wegman. 1997. Cytogenetic  
effects in human exposure to arsenic. Mutation Research  
3
86:219-228.  
GONZÁLEZ-HITA, L, L. Sánchez, I. Mata. 1991. Estudio  
hidrogeoquímico e isotópico del acuífero granular de la  
Comarca Lagunera. Instituto Mexicano deTecnología delAgua.  
Technical Report inedit, Jiutepec.  
GULIS, G., M. Czompolyova, M. M. Jr. Cerhan. 2002. En ecological  
study of nitrate in municipal drinking water and cancer  
incidence in Trbava District, Slovakia. Environmental  
Research 88(3): 182-187.  
GUTIERREZ, M., P. Borrego. 1999. Water quality assessment of the  
Rio Conchos, Chihuahua, Mexico. Environment International  
ORTEGA-GUERRERO, A. 2003. Origin and geochemical evolution of  
groundwater in a closed-basin clayey aquitard, Northern  
Mexico. Journal of Hydrology 284:26-44.  
25: 573-583.  
GUTIERREZ, L. R., H. Rubio-Arias, R. Quintana, J.A. Ortega, M.  
Gutierrez. 2008. Heavy metals in water of the San Pedro  
River in Chihuahua, Mexico and its potential health risk.  
International Journal of Environmental Research and Public  
Health 5(2):91-98.  
GUTIÉRREZ-OJEDA, C. 2009. Determining the origin of arsenic in the  
Lagunera region aquifer, Mexico using geochemical modeling.  
In: J. Bundschuh, M.A. Armienta, P. Birkle, P. Bhattacharya, J.  
Matschullat, A.B. Mukherjee (eds.) Natural arsenic in  
groundwaters of Latin America - Occurrence, health impact  
and remediation. Taylor and Francis group, London p. 163-170.  
HOLGUÍN, C., H. Rubio, M.E. Olave, R.Saucedo, M. Gutiérrez, R.  
Bautista. 2006. Calidad del agua del río Conchos en la región  
de Ojinaga, Chihuahua: Parámetros físicoquímicos, metales y  
metaloides.Universidad y Ciencia 22:51-63.  
ORTEGA-GUERRERO, M.A. 2009. Presencia, distribución,  
hidrogeoquímica y origen de arsénico, fluoruro y otros  
elementos traza disueltos en agua subterránea, a escala de  
cuenca hidrológica tributaria de Lerma-Chapala, México.  
Revista mexicana de Ciencias Geológicas 26(1): 143-161.  
ORTIZ, D., L. Castro, F. Turrubiartes, J. Milán, M. Díaz-Barriga.  
1998. Assessment of the exposure to fluoride from drinking  
water in Durango, Mexico, using a geographic information  
system. Fluoride 31:183–187.  
OVALLE, J. 1996. Fluorosis dental de la población escolar de  
Salamanca Guanajuato. Revista ADM 53: 289-294.  
RAZO, I., L. Carrizales, F. Díaz-Barriga, M. Monroy. 2004. Arsenic  
and heavy metal pollution of soil, water and sediments in a  
semi-arid climate mining area in Mexico. Water, Air, and Soil  
Pollution 152:129-152  
HURTADO-JIMÉNEZ, R., J. Gardea-Torresdey. 2005. Estimación de la  
exposición a fluoruros en Los Altos de Jalisco, México. Salud  
Pública de México 47:58-63.  
HURTADO-JIMÉNEZ, R., J.L. Gardea-Torresdey. 2006. Arsenic in  
drinking water in the Los Altos de Jalisco region of Mexico  
RESÉNDIZ, M.R.I., L.J.C. Zúñiga. 2003. Evaluación de la Exposición  
al arsénico en pobladores del municipio de Zimapán, Hidalgo»,  
Bachelor´s Thesis Eng. Chem., Universidad Tecnológica de  
México, Mexico, D.F.  
REYES-CORTÉS, I.A., M. Reyes-Cortés, L. Villalba, M.E. Montero-  
Cabrera, R. Ledesma-Ruíz, Y. Barrera-Prieto, A.Y. Precoma-  
Mojarro, Vázquez-Baldera, J.F. 2006a. Origen del As en las  
cuencas endorreicas, Chihuahua, México. Geos 26:39  
[
Arsénico en el agua potable de la región de Los Altos de  
Jalisco, México]. Revista Panamericana de Salud Pública  
0(4):236-247  
2
1
60  
 Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
REYES-CORTÉS, I.A., J.F. Vázquez-Balderas, R. Ledesma-Ruiz.  
006b. As en el sistema hidrogeológico del valle de Delicias,  
Chihuahua, México. Geos 26:40  
REYNA-CARRANZA, M.A., G. López-Bobadilla. 2002. Estudio del efecto  
del radón en los casos de muerte por cáncer pulmonar en la  
población de Mexicali, Baja California, México. Revista  
Mexicana de Ingeniería Biomédica 23(2), 68-73.  
SANCHEZ-GARCIA, S.,A. Pontigo-Loyola, E. Heredia.Ponce, J. Ugalde-  
Arellano. 2004. Fluorosis dental en adolescentes de tres  
comunidades del estado de Querétaro. Revista Mexicana de  
Pediatría 17:5-9  
SEGOVIA, N., M.I. Gaso., M.A.Armienta. 2007. Environmental radon  
studies in Mexico. Environmental Geochemistry and Health  
29: 143-153.  
2
RODRÍGUEZ, R, G. Hernández, T. González, A. Cortes. 1997.  
Definición del flujo regional de agua subterránea, su  
potencialidad y uso en la zona de la ciudad deAguascalientes,  
Ags. Technical Report inedit, IGF-UNAM, México, D.F.  
RODRÍGUEZ, R., J.A. Mejía, J. Berlín,A.Armienta, T. González. 2000.  
Estudio para la determinación del grado de alteración de la  
calidad del agua subterránea por compuestos orgánicos en  
Salamanca, Gto. Technical Report inedit, CEASG, IGF-UNAM,  
México, D.F.  
SOTO-ROJAS, AE, J.L. Ureña-Cirett, E.A. Martínez-Mier. 2004. A  
review of the prevalence of dental fluorosis in México. Revista  
Panamericana de Salud Pública 15: 9-18.  
SQUILLACE, P.J., P.J. Scott, M.J. Moran, B.T. Nolan, D.W. Kolpin.  
2002. VOCs, pesticides, nitrate and their mixtures in  
groundwater used for drinking water in the United States.  
Environmental Science and Technology 36: 1923-1930.  
SRACEK, O. M.A. Armienta, R. Rodríguez, G. Villaseñor. 2010.  
Discrimination between diffuse and point sources of arsenic  
at Zimapán, Hidalgo state, Mexico. Journal of Environmental  
Monitoring 12:329-337.  
RODRÍGUEZ, R., M.A. Armienta, P. Morales, T. Silva, H. Hernández.  
2
006. Evaluación de Vulnerabilidad Acuífera del valle de  
Irapuato Gto. Technical Report inedit, JAPAMI, CONCyTEG,  
IGF UNAM. México, D.F.  
RODRÍGUEZ, R., J.A. Ramos, M.A. Armienta. 2004. Groundwater  
arsenic variations: The role of local geology and rainfall.  
Applied Geochemistry 19: 245-250.  
ROSALES-CASTILLO, J.A., R.T. Acosta-Saavedra, J. Ochoa-Fierro,  
V.H. Borja-Aburto, L. Lopez-Carrillo, G.G. Garcia-Vargas, G.B.  
Gurrola-Mariano, M.E. Cebrian, E.S. Calderon-Aranda. 2004.  
Arsenic exposure and human papilloma virus response in  
non-melanoma skin cancer Mexican patients: a pilot study.  
International Archives of Occupational Environmental Health  
TREJO-VÁZQUEZ, R., A. Bonilla-Petriciolet. 2002. Cuantificación de  
arsénico en el agua subterránea de la ciudad deAguascalientes,  
México, y evaluación de riesgos entre la población. Revista  
Ingeniería Hidráulica en México 17: 79-88.  
VALENZUELA, O.L., D.R. Germolec, V.H. Borja-Aburto, J. Contreras-  
Ruiz, G.G, García-Vargas, L.M. Del Razo. 2007. Chronic arsenic  
exposure increases TGFalpha concentration in bladder  
urothelial cells of Mexican populations environmentally  
exposed to inorganic arsenic. Toxicology and Applied  
Pharmacology 222:264-270.  
VILLALBA, M. de L., L.H. Colmenero, M.E. Montero, M. E. 2011.  
Análisis y dosimetría de radionúclidos en agua; estudio  
realizado en Chihuahua-Mexico. EditorialAcademica Española.  
VOLKNER, B.G., B. Ernst, J. Simon, R. Kuefer, G. Jr. Bartsch, D.  
Bach, J.E. Gschwend. 2005. Influence of nitrate levels in  
drinking water on urological malignancies: a community-based  
cohort sutdy. British Journal of Urology International  
95(7):972-976.  
WYATT, C.J., V. Lopez Quiroga, R.T. Olivas-Acosta, R.O. Méndez  
RO. 1998a. Excretion of Arsenic (As) in Urine of Children, 7–  
11 Years, Exposed to Elevated Levels of As in the City Water  
Supply in Hermosillo, Sonora, México. Environmental  
Research A 78:19-24.  
77, 418–423.  
ROSAS, I., R. Belmont, A. Armienta, A. Baez. 1999. Arsenic  
concentrations in water, soil, milk and forage in Comarca  
Lagunera, Mexico. Water, Air, and Soil Pollution 112:133-149.  
RUBIO, H.O., M.K. Wood, M.H.E. Alanis. 2004. Water pollution in  
the Rio Conchos of northern México. In: Tenth International  
Conference on Development and Application of Computer  
Techniques to Environmental Studies. Wit Press, Ashurst  
Lodge, Ashurst, Southampton S040. UK.167-176.  
RUBIO, A.H., T.R. Saucedo, M.R. Bautista, K. Wood, C. Holguin, J.  
Jimenez. 2006. Are crop and range land being contaminated  
with cadmium and lead in sediments transported by wind  
from an adjacent contaminated shallow lake? In: JF Martin-  
Duque, CA Brebbia, DE Emmanouloudis and U. Mander (eds.).  
Geo-Environment and Landscape Evolution II. WitPress.  
Ashurst Southampton. p. 135-141.  
WYATT, C.J., C. Fimbres C, L. Romo. R.O. Méndez, M. Grijalva.  
1998b. Incidence of heavy metal contamination in water  
supplies in Northern Mexico. Environmental Research A  
76:114-119  
RUBIO-ARIAS, H., N.I. Rey, R.M. Quintana, V.G. Nevarez, O. Palacios.  
YÁÑEZ, L., E. García-Nieto, E. Rojas, L. Carrizales, J. Mejía, J.  
Calderón, I. Razo, F. Díaz-Barriga. 2003. DNA damage in blood  
cells from children exposed to arsenic and lead in a mining  
area. Environmental Research 93:231-240.  
2
011. Coliform and metal contamination in Lago de Colina, a  
recreational water body in Chihuahua State, Mexico.  
International Journal of Environmental Research and Public  
Health 8: 2386-2400.  
RUBIO-ARIAS, H., M. Contreras-Caraveo, R. Quintana, R. Saucedo-  
Terán,A. Pinales-Munguia. 2012.An overall water quality index  
(
WQI) for a man-made aquatic reservoir in Mexico.  
International Journal of Environmental Research and Public  
Health. In Press.  
Este artículo es citado así:  
Armienta, M. A., R. B. Finkelman and H. O. Rubio-Arias. 2013: Medical Geology: Its Relevance to Mexico.  
TECNOCIENCIA Chihuahua 7(3): 152-162.  
1
61  
Vol. VII, No. 3  Septiembre-Diciembre 2013 •  
MARÍA AURORA ARMIENTA, ROBERT B. FINKELMAN Y HÉCTOR O. RUBIO-ARIAS: Medical Geology: Its Relevance to Mexico  
Resúmenes curriculares de autor y coautores  
MARÍA AURORA ARMIENTA HERNÁNDEZ. Reali estudios de Ingeniería Química en la Universidad Autónoma de Sinaloa y la Universidad  
Iberoamericana y se graduó (por la U. Iberoamericana y la Universidad Nacional Autónoma de México) con Mención Honorífica en  
1997. Desarrolló sus estudios de posgrado en la UNAM, donde obtuvo el grado de Maestría en Ciencias (Química Analítica) en 1988  
y el Doctorado en Geofísica (Aguas Subterráneas) en 1992. Le fue otorgada la Medalla Gabino Barreda (UNAM) por sus estudios  
de maestría y la Mención Honorífica en el examen doctoral. Actualmente es Investigadora Titular C de T.C. en el Instituto de Geofísica  
y profesora del Posgrado en Ciencias de la Tierra de la UNAM. Sus áreas de investigación comprenden la geoquímica ambiental,  
hidrogeoquímica y los procesos geoquímicos asociados a la actividad volcánica. Ha dirigido 12 tesis de licenciatura, 13 de maestría  
y 6 de doctorado. Su obra científica suma 88 artículos publicados en revistas arbitradas internacionales, 28 capítulos en libros, 2  
libros editados, 28 artículos en memorias arbitrados y 42 artículos en memorias no arbitrados, así como 14 artículos de divulgación.  
Ha impartido cursos cortos y conferencias en diversos lugares del país, así como en España, Alemania, EUA, Uruguay y Perú. Ha  
sido responsable de 15 proyectos con financiamiento externo a la UNAM. Fue Presidenta del Instituto Nacional de Geoquímica y  
"Delegate at large" de la Association for Women Geoscientists, fue responsable por parte de México de la red CYTED Iberoarsen:  
El arsénico en Iberoamérica. Distribución, metodologías analíticas y tecnologías económicas de remoción. Recientemente fue electa  
como "Vice-Chair for Geosciences" de la International Medical Geology Association (IMGA). Es miembro del Sistema Nacional de  
Investigadores en el Nivel III, de El Colegio de Sinaloa y del Comité Científico Asesor del Volcán Popocatépetl. En los últimos 5 años  
ha realizado arbitrajes para 18 revistas internacionales, para proyectos de CONACYT, del gobierno del Distrito Federal, de la UNAM,  
y para la ANPCyT de Argentina.  
ROBERT B. FINKELMAN. Robert Finkelman retired in 2005 after 32 years with the U.S. Geological Survey (USGS), is currently a Research  
Professor in the Dept. of Geosciences at the University of Texas at Dallas and an Adjunct Professor at the China University of  
Geosciences, Beijing. He is an internationally recognized scientist widely known for his work on coal chemistry and as a leader of  
the emerging field of Medical Geology. Dr. Finkelman has degrees in geology, geochemistry, and chemistry. He has a diverse  
professional background having worked for the federal government (USGS) and private industry (Exxon), formed a consulting  
company (Environmental and Coal Associates), and has lectured and provided mentorship at colleges and universities around the  
world. Most of Dr. Finkelman's professional career has been devoted to understanding the properties of coal and how these  
properties affect coal's technological performance, economic byproduct potential and environmental and health impacts. For the  
past 17 years he has devoted his efforts to developing the field of Medical Geology. Dr. Finkelman is the author of some 700  
publications and has been invited to speak in more than 50 countries. Dr. Finkelman has served as Chairman of the Geological  
Society of America's Coal Geology Division; Chair of the International Association for Cosmochemistry and Geochemistry, Working  
Group on Geochemistry and Health; founding member and past chair of the International Medical Geology Association; President of  
the Society for Organic Petrology; member of the American Registry of Pathology Board of Scientific Directors and is Past-Chair of  
the GSA's Geology and Health Division. He was a recipient of the Nininger Meteorite Award; recipient of the Gordon H. Wood Jr.  
Memorial Award from the AAPG Eastern Section; a Fellow of the Geological Society of America; and a recipient of the Cady Award  
from the GSA's Coal Geology Division. Dr. Finkelman was also awarded a U. S. State Department Embassy Science Fellowship for  
an assignment in South Africa and was a member of a National Research Council committee looking at the future of coal in the U.S.  
HÉCTOR OSBALDO RUBIO ARIAS. Terminó su programa Doctoral en New Mexico State University, en los Estados Unidos de Norteamérica  
en el año 1989. Fue Investigador Titular en el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) por 31  
años, donde se encuentra ya jubilado. En la actualidad, es Profesor de medio tiempo en la Facultad de Zootecnia y Ecología de la  
Universidad Autónoma de Chihuahua y fue maestro invitado por el Centro de Investigación en Materiales Avanzados (CIMAV-  
CONACYT) desde el año 2004 hasta diciembre de 2012. El Dr. Rubio tiene tres libros publicados y aparece como co-autor en otros  
tres. Tiene alrededor de 50 publicaciones internacionales y 40 nacionales. Ha participado en reuniones en la FAO (Roma 1974),  
Venezuela (OEA) Israel, Francia, Italia, Portugal, Grecia, República de Malta, China, Japón, Estados Unidos de Norteamérica,  
Inglaterra, España y otros en América Latina. Es miembro del Comité Editorial de varias revistas tanto internacionales como  
nacionales así como revisor científico. Es evaluador en diversos fondos como en los fondos sectoriales SAGARPA-CONACYT y  
CONAFOR-CONACYT donde fue miembro de la Comisión de Evaluación en el periodo de 2008 hasta 2012. El Dr. Rubio es miembro  
del Sistema Nacional de Investigadores y aparece como experto en bioseguridad por la CONABIO. Fue galardonado con el premio  
Rotario Chihuahua en ciencia y tecnología en el 2009. En los últimos cinco años, el Dr. Rubio ha ofrecido como ponente y/o  
participante alrededor de 40 cursos de capacitación, incluidos en CASA-ANUIES y diversas Universidades y Centros de Investigación.  
1
62  
 Vol. VII, No. 3  Septiembre-Diciembre 2013 •